期刊论文详细信息
Journal of Cheminformatics
Force field-inspired molecular representation learning for property prediction
Research
Yuchen He1  Gao-Peng Ren2  Yi-Jian Yin2  Ke-Jun Wu3 
[1] State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, 310027, Hangzhou, China;Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China;Institute of Zhejiang University-Quzhou, 324000, Quzhou, China;Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China;Institute of Zhejiang University-Quzhou, 324000, Quzhou, China;School of Chemical and Process Engineering, University of Leeds, LS2 9JT, Leeds, UK;
关键词: Molecular representation learning;    Graph neural networks;    Force field;    Molecular property prediction;    Protein–ligand binding affinity;   
DOI  :  10.1186/s13321-023-00691-2
 received in 2022-12-06, accepted in 2023-01-30,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Molecular representation learning is a crucial task to accelerate drug discovery and materials design. Graph neural networks (GNNs) have emerged as a promising approach to tackle this task. However, most of them do not fully consider the intramolecular interactions, i.e. bond stretching, angle bending, torsion, and nonbonded interactions, which are critical for determining molecular property. Recently, a growing number of 3D-aware GNNs have been proposed to cope with the issue, while these models usually need large datasets and accurate spatial information. In this work, we aim to design a GNN which is less dependent on the quantity and quality of datasets. To this end, we propose a force field-inspired neural network (FFiNet), which can include all the interactions by incorporating the functional form of the potential energy of molecules. Experiments show that FFiNet achieves state-of-the-art performance on various molecular property datasets including both small molecules and large protein–ligand complexes, even on those datasets which are relatively small and without accurate spatial information. Moreover, the visualization for FFiNet indicates that it automatically learns the relationship between property and structure, which can promote an in-depth understanding of molecular structure.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305152583190ZK.pdf 1440KB PDF download
12302_2023_718_Article_IEq54.gif 1KB Image download
Fig. 2 112KB Image download
12302_2023_718_Article_IEq70.gif 1KB Image download
Fig. 5 1491KB Image download
Fig. 7 176KB Image download
Fig. 1 139KB Image download
40854_2023_458_Article_IEq23.gif 1KB Image download
MediaObjects/41021_2023_262_MOESM1_ESM.xlsx 19KB Other download
Fig. 2 1674KB Image download
Fig. 4 437KB Image download
Fig. 3 3725KB Image download
Fig. 1 511KB Image download
Fig. 2 1441KB Image download
Fig. 1 1474KB Image download
Fig. 6 2069KB Image download
Fig. 3 1919KB Image download
MediaObjects/13046_2018_1010_MOESM1_ESM.tif 32227KB Other download
MediaObjects/12960_2023_799_MOESM8_ESM.docx 24KB Other download
42004_2023_830_Article_IEq12.gif 1KB Image download
Fig. 3 197KB Image download
Fig. 1 270KB Image download
MediaObjects/12936_2023_4503_MOESM1_ESM.pdf 369KB PDF download
658KB Image download
42004_2023_830_Article_IEq16.gif 1KB Image download
MediaObjects/13068_2023_2267_MOESM4_ESM.docx 46KB Other download
Fig. 3 1622KB Image download
MediaObjects/13068_2023_2267_MOESM5_ESM.docx 48KB Other download
Fig. 1 168KB Image download
【 图 表 】

Fig. 1

Fig. 3

42004_2023_830_Article_IEq16.gif

Fig. 1

Fig. 3

42004_2023_830_Article_IEq12.gif

Fig. 3

Fig. 6

Fig. 1

Fig. 2

Fig. 1

Fig. 3

Fig. 4

Fig. 2

40854_2023_458_Article_IEq23.gif

Fig. 1

Fig. 7

Fig. 5

12302_2023_718_Article_IEq70.gif

Fig. 2

12302_2023_718_Article_IEq54.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  文献评价指标  
  下载次数:3次 浏览次数:0次