期刊论文详细信息
Journal of High Energy Physics
Flow-oriented perturbation theory
Regular Article - Theoretical Physics
Eric Laenen1  Zeno Capatti2  Michael Borinsky3  Alexandre Salas-Bernárdez4 
[1] IOP/ITFA, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands;Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands;ITF, Utrecht University, Leuvenlaan 4, 3584 CE, Utrecht, The Netherlands;Institute for Theoretical Physics, ETH Zürich, 8093, Zürich, Switzerland;Institute for Theoretical Studies, ETH Zürich, 8092, Zürich, Switzerland;Universidad Complutense de Madrid, Departamento de Física Teórica and IPARCOS, 28040, Madrid, Spain;
关键词: Field Theories in Lower Dimensions;    Higher-Order Perturbative Calculations;    Renormalization and Regularization;    Scattering Amplitudes;   
DOI  :  10.1007/JHEP01(2023)172
 received in 2022-10-25, accepted in 2023-01-12,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

We introduce a new diagrammatic approach to perturbative quantum field theory, which we call flow-oriented perturbation theory (FOPT). Within it, Feynman graphs are replaced by strongly connected directed graphs (digraphs). FOPT is a coordinate space analogue of time-ordered perturbation theory and loop-tree duality, but it has the advantage of having combinatorial and canonical Feynman rules, combined with a simplified iε dependence of the resulting integrals. Moreover, we introduce a novel digraph-based representation for the S-matrix. The associated integrals involve the Fourier transform of the flow polytope. Due to this polytope’s properties, our S-matrix representation exhibits manifest infrared singularity factorization on a per-diagram level. Our findings reveal an interesting interplay between spurious singularities and Fourier transforms of polytopes.

【 授权许可】

Unknown   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305152176328ZK.pdf 695KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  文献评价指标  
  下载次数:6次 浏览次数:0次