| Journal of High Energy Physics | |
| A geometrical approach to nontrivial topology via exotic spinors | |
| Regular Article - Theoretical Physics | |
| J. M. Hoff da Silva1  G. M. Caires da Rocha1  R. T. Cavalcanti2  D. Beghetto3  | |
| [1] Departamento de Física, Universidade Estadual Paulista, UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá, SP, Brazil;Departamento de Física, Universidade Estadual Paulista, UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá, SP, Brazil;Center of Mathematics, Federal University of ABC, 09210-580, Santo André, Brazil;Instituto Federal do Norte de Minas Gerais, Rodovia MG 202, km 392, Sub Trecho: Arinos/Entroncamento de Uruana de Minas, Arinos, MG, Brazil; | |
| 关键词: Space-Time Symmetries; Violation of Lorentz and/or CPT Symmetry; Effective Field Theories; | |
| DOI : 10.1007/JHEP02(2023)059 | |
| received in 2022-11-30, accepted in 2023-01-27, 发布年份 2023 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
Exotic spinors arise in non-simply connected base manifolds due to the nonequivalent spinor structure. The dynamics of exotic spinors are endowed with an additional differential factor. In this work, we merge the exotic spinor scenario with Cartan’s spinor viewpoint, according to which a given spacetime point is understood as a kind of composition of spinor entries. As a result, we arrive at a geometrical setup in which the Minkowski metric is perturbed by elements reflecting the nontrivial topology. Such corrections shall be felt by any physical system studied with the resulting bilinear form. Within the flat spacetime context, we investigate quasinormal modes arising from the interference of nontrivial topology in the scalar field dispersion relation.
【 授权许可】
Unknown
© The Author(s) 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202305151213398ZK.pdf | 381KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
PDF