期刊论文详细信息
BMC Medical Informatics and Decision Making
The classification of flash visual evoked potential based on deep learning
Research
Wen Zhong1  Chengliang Wang2  Na Liang2  Xin Xie2  Shiying Li3  Jun Lin4 
[1] Chongqing Health Statistics Information Center, Chongqing, China;College of Computer Science, Chongqing University, Chongqing, China;Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China;Department of Ophthalmology, Eye Institute of Xiamen University, Xiamen, China;Department of Ophthalmology, Yongchuan People’s Hospital of Chongqing, Chongqing, China;
关键词: Deep learning;    FVEP;    Out-of-distribution detection;    Convolutional neural networks;   
DOI  :  10.1186/s12911-023-02107-5
 received in 2022-08-23, accepted in 2023-01-12,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundVisual electrophysiology is an objective visual function examination widely used in clinical work and medical identification that can objectively evaluate visual function and locate lesions according to waveform changes. However, in visual electrophysiological examinations, the flash visual evoked potential (FVEP) varies greatly among individuals, resulting in different waveforms in different normal subjects. Moreover, most of the FVEP wave labelling is performed automatically by a machine, and manually corrected by professional clinical technicians. These labels may have biases due to the individual variations in subjects, incomplete clinical examination data, different professional skills, personal habits and other factors. Through the retrospective study of big data, an artificial intelligence algorithm is used to maintain high generalization abilities in complex situations and improve the accuracy of prescreening.MethodsA novel multi-input neural network based on convolution and confidence branching (MCAC-Net) for retinitis pigmentosa RP recognition and out-of-distribution detection is proposed. The MCAC-Net with global and local feature extraction is designed for the FVEP signal that has different local and global information, and a confidence branch is added for out-of-distribution sample detection. For the proposed manual features,a new input layer is added.ResultsThe model is verified by a clinically collected FVEP dataset, and an accuracy of 90.7% is achieved in the classification task and 93.3% in the out-of-distribution detection task.ConclusionWe built a deep learning-based FVEP classification algorithm that promises to be an excellent tool for screening RP diseases by using FVEP signals.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305119862543ZK.pdf 1593KB PDF download
Fig. 7 446KB Image download
41116_2022_35_Article_IEq184.gif 1KB Image download
41116_2022_35_Article_IEq189.gif 1KB Image download
41116_2022_35_Article_IEq191.gif 1KB Image download
41116_2022_35_Article_IEq193.gif 1KB Image download
41116_2022_35_Article_IEq196.gif 1KB Image download
41116_2022_35_Article_IEq199.gif 1KB Image download
41116_2022_35_Article_IEq201.gif 1KB Image download
41116_2022_35_Article_IEq203.gif 1KB Image download
41116_2022_35_Article_IEq205.gif 1KB Image download
41116_2022_35_Article_IEq206.gif 1KB Image download
41116_2022_35_Article_IEq207.gif 1KB Image download
41116_2022_35_Article_IEq208.gif 1KB Image download
40249_2023_1056_Article_IEq5.gif 1KB Image download
41116_2022_35_Article_IEq209.gif 1KB Image download
41116_2022_35_Article_IEq210.gif 1KB Image download
41116_2022_35_Article_IEq211.gif 1KB Image download
【 图 表 】

41116_2022_35_Article_IEq211.gif

41116_2022_35_Article_IEq210.gif

41116_2022_35_Article_IEq209.gif

40249_2023_1056_Article_IEq5.gif

41116_2022_35_Article_IEq208.gif

41116_2022_35_Article_IEq207.gif

41116_2022_35_Article_IEq206.gif

41116_2022_35_Article_IEq205.gif

41116_2022_35_Article_IEq203.gif

41116_2022_35_Article_IEq201.gif

41116_2022_35_Article_IEq199.gif

41116_2022_35_Article_IEq196.gif

41116_2022_35_Article_IEq193.gif

41116_2022_35_Article_IEq191.gif

41116_2022_35_Article_IEq189.gif

41116_2022_35_Article_IEq184.gif

Fig. 7

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  文献评价指标  
  下载次数:8次 浏览次数:0次