| Journal of High Energy Physics | |
| No room to hide: implications of cosmic-ray upscattering for GeV-scale dark matter | |
| Regular Article - Theoretical Physics | |
| Helena Kolesova1  Torsten Bringmann2  James Alvey3  | |
| [1] Department of Mathematics and Physics, University of Stavanger, 4036, Stavanger, Norway;AEC, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland;Department of Physics, University of Oslo, Box 1048, N-0316, Oslo, Norway;Theoretical Physics Department, CERN, 1211, Geneva 23, Switzerland;GRAPPA Institute, Institute for Theoretical Physics Amsterdam, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; | |
| 关键词: Particle Nature of Dark Matter; Cosmic Rays; Models for Dark Matter; | |
| DOI : 10.1007/JHEP01(2023)123 | |
| received in 2022-09-21, accepted in 2022-12-24, 发布年份 2022 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
The irreducible upscattering of cold dark matter by cosmic rays opens up the intriguing possibility of detecting even light dark matter in conventional direct detection experiments or underground neutrino detectors. The mechanism also significantly enhances sensitivity to models with very large nuclear scattering rates, where the atmosphere and rock overburden efficiently stop standard non-relativistic dark matter particles before they could reach the detector. In this article, we demonstrate that cosmic-ray upscattering essentially closes the window for strongly interacting dark matter in the (sub-)GeV mass range. Arriving at this conclusion crucially requires a detailed treatment of both nuclear form factors and inelastic dark matter-nucleus scattering, as well as including the full momentum-transfer dependence of scattering amplitudes. We illustrate the latter point by considering three generic situations where such a momentum-dependence is particularly relevant, namely for interactions dominated by the exchange of light vector or scalar mediators, respectively, and for dark matter particles of finite size. As a final concrete example, we apply our analysis to a putative hexaquark state, which has been suggested as a viable baryonic dark matter candidate. Once again, we find that the updated constraints derived in this work close a significant part of otherwise unconstrained parameter space.
【 授权许可】
Unknown
© The Author(s) 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202305119785297ZK.pdf | 3561KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]
- [90]
- [91]
- [92]
- [93]
- [94]
- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
- [102]
- [103]
- [104]
- [105]
- [106]
- [107]
- [108]
- [109]
- [110]
- [111]
- [112]
- [113]
- [114]
- [115]
- [116]
- [117]
- [118]
- [119]
- [120]
- [121]
- [122]
- [123]
- [124]
- [125]
- [126]
- [127]
- [128]
- [129]
- [130]
- [131]
- [132]
- [133]
- [134]
- [135]
- [136]
- [137]
- [138]
- [139]
- [140]
- [141]
- [142]
- [143]
- [144]
- [145]
- [146]
- [147]
- [148]
- [149]
- [150]
- [151]
- [152]
- [153]
- [154]
- [155]
- [156]
- [157]
- [158]
- [159]
- [160]
- [161]
- [162]
- [163]
- [164]
- [165]
- [166]
- [167]
PDF