Biotechnology for Biofuels and Bioproducts | |
Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production | |
Research | |
Gabriela Felix Persinoti1  Eduardo Cruz Moraes2  André Damasio2  Geizecler Tomazetto3  Arthur Henrique Cavalcante de Oliveira4  Victoria Sodré5  Taícia Pacheco Fill6  Stephanie Nemesio da Silva6  Thiago Augusto Gonçalves7  Fabio Marcio Squina8  Nathália Vilela9  | |
[1] Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil;Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200, Aarhus, Denmark;Department of Chemistry, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil;Department of Chemistry, University of Warwick, Coventry, UK;Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil;Photobiocatalysis Unit—CPBL, and Biomass Transformation Lab—BTL, École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Brussels, Belgium;Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil;Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil;Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil; | |
关键词: Lignin valorization; Ferulic acid; 4-Vinyl guaiacol; Vanillin; Rhodosporidium fluviale; | |
DOI : 10.1186/s13068-022-02251-6 | |
received in 2022-06-15, accepted in 2022-12-18, 发布年份 2022 | |
来源: Springer | |
【 摘 要 】
BackgroundLignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds.ResultsLignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2.ConclusionsThe multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305119410185ZK.pdf | 4222KB | download | |
MediaObjects/12888_2023_4551_MOESM2_ESM.pdf | 241KB | download | |
41116_2022_35_Article_IEq162.gif | 1KB | Image | download |
Fig. 1 | 91KB | Image | download |
Fig. 4 | 139KB | Image | download |
MediaObjects/12888_2023_4566_MOESM2_ESM.docx | 50KB | Other | download |
41116_2022_35_Article_IEq170.gif | 1KB | Image | download |
41116_2022_35_Article_IEq189.gif | 1KB | Image | download |
41116_2022_35_Article_IEq205.gif | 1KB | Image | download |
41116_2022_35_Article_IEq209.gif | 1KB | Image | download |
41116_2022_35_Article_IEq223.gif | 1KB | Image | download |
41116_2022_35_Article_IEq226.gif | 1KB | Image | download |
41116_2022_35_Article_IEq228.gif | 1KB | Image | download |
Fig. 1 | 71KB | Image | download |
41116_2022_35_Article_IEq234.gif | 1KB | Image | download |
MediaObjects/12888_2023_4553_MOESM2_ESM.xls | 513KB | Other | download |
41116_2022_35_Article_IEq248.gif | 1KB | Image | download |
【 图 表 】
41116_2022_35_Article_IEq248.gif
41116_2022_35_Article_IEq234.gif
Fig. 1
41116_2022_35_Article_IEq228.gif
41116_2022_35_Article_IEq226.gif
41116_2022_35_Article_IEq223.gif
41116_2022_35_Article_IEq209.gif
41116_2022_35_Article_IEq205.gif
41116_2022_35_Article_IEq189.gif
41116_2022_35_Article_IEq170.gif
Fig. 4
Fig. 1
41116_2022_35_Article_IEq162.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]