期刊论文详细信息
BMC Medical Informatics and Decision Making
Entity and relation extraction from clinical case reports of COVID-19: a natural language processing approach
Research
Shaina Raza1  Brian Schwartz1 
[1] Public Health Ontario (PHO), Toronto, ON, Canada;Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada;
关键词: Natural language processing;    Data cohort;    COVID-19;    Named entity;    Relation extraction;    Transfer learning;    Artificial intelligence;   
DOI  :  10.1186/s12911-023-02117-3
 received in 2022-11-25, accepted in 2023-01-20,  发布年份 2023
来源: Springer
PDF
【 授权许可】

CC BY   
© Crown 2023

【 预 览 】
附件列表
Files Size Format View
RO202305117946676ZK.pdf 2924KB PDF download
Fig. 1 144KB Image download
40798_2022_490_Article_IEq60.gif 1KB Image download
Fig. 60 330KB Image download
Fig. 2 226KB Image download
40798_2022_490_Article_IEq71.gif 1KB Image download
Fig. 1 559KB Image download
Fig. 61 1677KB Image download
13690_2022_1010_Article_IEq7.gif 1KB Image download
13690_2022_1010_Article_IEq10.gif 1KB Image download
MediaObjects/41408_2022_766_MOESM3_ESM.pdf 219KB PDF download
13690_2022_1010_Article_IEq14.gif 1KB Image download
40798_2022_490_Article_IEq87.gif 1KB Image download
MediaObjects/41408_2022_766_MOESM4_ESM.pdf 169KB PDF download
【 图 表 】

40798_2022_490_Article_IEq87.gif

13690_2022_1010_Article_IEq14.gif

13690_2022_1010_Article_IEq10.gif

13690_2022_1010_Article_IEq7.gif

Fig. 61

Fig. 1

40798_2022_490_Article_IEq71.gif

Fig. 2

Fig. 60

40798_2022_490_Article_IEq60.gif

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  文献评价指标  
  下载次数:6次 浏览次数:3次