期刊论文详细信息
Molecular Cancer
Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance
Review
Hani Goodarzi1  Mark Jesus M. Magbanua2  Laura J. van ’t Veer2  Marián Hajdúch3  Josef Srovnal3  Pavel Stejskal4 
[1] Department of Biochemistry and Biophysics, University of California San Francisco, 94158, San Francisco, CA, USA;Department of Urology, University of California San Francisco, 94158, San Francisco, CA, USA;Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA, USA;Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 779 00, Olomouc, Czech Republic;Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 779 00, Olomouc, Czech Republic;Department of Biochemistry and Biophysics, University of California San Francisco, 94158, San Francisco, CA, USA;
关键词: Circulating tumor DNA;    Circulating tumor RNA;    Cell-free DNA;    Shedding mechanisms;    Liquid biopsy;    Biomarkers;    Precision oncology;    Clinical application;   
DOI  :  10.1186/s12943-022-01710-w
 received in 2022-11-03, accepted in 2022-12-29,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundDespite advances in early detection and therapies, cancer is still one of the most common causes of death worldwide. Since each tumor is unique, there is a need to implement personalized care and develop robust tools for monitoring treatment response to assess drug efficacy and prevent disease relapse.Main bodyRecent developments in liquid biopsies have enabled real-time noninvasive monitoring of tumor burden through the detection of molecules shed by tumors in the blood. These molecules include circulating tumor nucleic acids (ctNAs), comprising cell-free DNA or RNA molecules passively and/or actively released from tumor cells. Often highlighted for their diagnostic, predictive, and prognostic potential, these biomarkers possess valuable information about tumor characteristics and evolution. While circulating tumor DNA (ctDNA) has been in the spotlight for the last decade, less is known about circulating tumor RNA (ctRNA). There are unanswered questions about why some tumors shed high amounts of ctNAs while others have undetectable levels. Also, there are gaps in our understanding of associations between tumor evolution and ctNA characteristics and shedding kinetics. In this review, we summarize current knowledge about ctNA biology and release mechanisms and put this information into the context of tumor evolution and clinical utility.ConclusionsA deeper understanding of the biology of ctDNA and ctRNA may inform the use of liquid biopsies in personalized medicine to improve cancer patient outcomes.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305117852635ZK.pdf 2262KB PDF download
Fig. 1 459KB Image download
41116_2022_35_Article_IEq459.gif 1KB Image download
Fig. 2 119KB Image download
MediaObjects/12888_2022_4495_MOESM1_ESM.docx 54KB Other download
【 图 表 】

Fig. 2

41116_2022_35_Article_IEq459.gif

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  • [102]
  • [103]
  • [104]
  • [105]
  • [106]
  • [107]
  • [108]
  • [109]
  • [110]
  • [111]
  • [112]
  • [113]
  • [114]
  • [115]
  • [116]
  • [117]
  • [118]
  • [119]
  • [120]
  • [121]
  • [122]
  • [123]
  • [124]
  • [125]
  • [126]
  • [127]
  • [128]
  • [129]
  • [130]
  • [131]
  • [132]
  • [133]
  • [134]
  • [135]
  • [136]
  • [137]
  • [138]
  • [139]
  • [140]
  • [141]
  • [142]
  • [143]
  • [144]
  • [145]
  • [146]
  • [147]
  • [148]
  • [149]
  • [150]
  • [151]
  • [152]
  • [153]
  • [154]
  • [155]
  • [156]
  • [157]
  • [158]
  • [159]
  • [160]
  • [161]
  • [162]
  • [163]
  • [164]
  • [165]
  • [166]
  • [167]
  • [168]
  • [169]
  • [170]
  • [171]
  • [172]
  • [173]
  • [174]
  • [175]
  • [176]
  • [177]
  • [178]
  • [179]
  • [180]
  • [181]
  • [182]
  • [183]
  • [184]
  • [185]
  • [186]
  • [187]
  • [188]
  • [189]
  • [190]
  • [191]
  • [192]
  • [193]
  • [194]
  • [195]
  • [196]
  • [197]
  • [198]
  • [199]
  • [200]
  • [201]
  • [202]
  • [203]
  • [204]
  • [205]
  • [206]
  • [207]
  • [208]
  • [209]
  • [210]
  • [211]
  • [212]
  文献评价指标  
  下载次数:1次 浏览次数:2次