Visual Computing for Industry, Biomedicine, and Art | |
An efficient non-iterative smoothed particle hydrodynamics fluid simulation method with variable smoothing length | |
Original Article | |
Weiliang Meng1  Jian Zhu2  Hongshu Li3  Min Li4  Gary Zhang5  | |
[1] National Laboratory of Pattern Recognition, Institute of Automation of the Chinese Academy of Sciences, 100190, Beijing, China;The School of Computer Science, Guangdong University of Technology, 510006, Guangzhou, China;The School of Computer Science, Guangdong University of Technology, 510006, Guangzhou, China;The School of Advanced Manufacturing, Guangdong University of Technology, 510006, Guangzhou, China;The School of Computer Science, Guangdong University of Technology, 510006, Guangzhou, China;The School of Information Engineering, Guangdong University of Technology, 510006, Guangzhou, China;The School of Information Engineering, Guangdong University of Technology, 510006, Guangzhou, China; | |
关键词: Smoothed particle hydrodynamics; Variable smooth length; Fluid simulation; | |
DOI : 10.1186/s42492-022-00128-x | |
received in 2022-09-16, accepted in 2022-11-28, 发布年份 2022 | |
来源: Springer | |
【 摘 要 】
In classical smoothed particle hydrodynamics (SPH) fluid simulation approaches, the smoothing length of Lagrangian particles is typically constant. One major disadvantage is the lack of adaptiveness, which may compromise accuracy in fluid regions such as splashes and surfaces. Attempts to address this problem used variable smoothing lengths. Yet the existing methods are computationally complex and non-efficient, because the smoothing length is typically calculated using iterative optimization. Here, we propose an efficient non-iterative SPH fluid simulation method with variable smoothing length (VSLSPH). VSLSPH correlates the smoothing length to the density change, and adaptively adjusts the smoothing length of particles with high accuracy and low computational cost, enabling large time steps. Our experimental results demonstrate the advantages of the VSLSPH approach in terms of its simulation accuracy and efficiency.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305117159271ZK.pdf | 2620KB | download | |
41116_2022_35_Article_IEq522.gif | 1KB | Image | download |
41116_2022_35_Article_IEq524.gif | 1KB | Image | download |
Fig. 33 | 734KB | Image | download |
41116_2022_35_Article_IEq529.gif | 1KB | Image | download |
Fig. 1 | 68KB | Image | download |
Fig. 36 | 48KB | Image | download |
41116_2022_35_Article_IEq543.gif | 1KB | Image | download |
41116_2022_35_Article_IEq567.gif | 1KB | Image | download |
41116_2022_35_Article_IEq573.gif | 1KB | Image | download |
41116_2022_35_Article_IEq575.gif | 1KB | Image | download |
41116_2022_35_Article_IEq577.gif | 1KB | Image | download |
41116_2022_35_Article_IEq587.gif | 1KB | Image | download |
41116_2022_35_Article_IEq588.gif | 1KB | Image | download |
41116_2022_35_Article_IEq589.gif | 1KB | Image | download |
41116_2022_35_Article_IEq590.gif | 1KB | Image | download |
41116_2022_35_Article_IEq591.gif | 1KB | Image | download |
Fig. 1 | 606KB | Image | download |
【 图 表 】
Fig. 1
41116_2022_35_Article_IEq591.gif
41116_2022_35_Article_IEq590.gif
41116_2022_35_Article_IEq589.gif
41116_2022_35_Article_IEq588.gif
41116_2022_35_Article_IEq587.gif
41116_2022_35_Article_IEq577.gif
41116_2022_35_Article_IEq575.gif
41116_2022_35_Article_IEq573.gif
41116_2022_35_Article_IEq567.gif
41116_2022_35_Article_IEq543.gif
Fig. 36
Fig. 1
41116_2022_35_Article_IEq529.gif
Fig. 33
41116_2022_35_Article_IEq524.gif
41116_2022_35_Article_IEq522.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]