Journal of Orthopaedic Surgery and Research | |
Mechanical performance of porous biomimetic intervertebral body fusion devices: an in vitro biomechanical study | |
Research Article | |
Ming-Jun Li1  Nien-Ti Tsou1  Fon-Yih Tsuang2  Po-Han Chu3  Jui-Sheng Sun4  | |
[1] Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC;Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Rd., 10002, Taipei, Taiwan, ROC;Research & Development, Ingrowth Biotech. Co., Ltd., 1F, No. 57, Luke 2nd Road, Luzhu District, Kaohsiung Science Park, 82151, Kaohsiung, Taiwan, ROC;Trauma and Emergency Center, China Medical University Hospital, No.2, Xueshi Rd., North Dist., 404018, Taichung City, Taiwan, ROC;Department of Orthopedic Surgery, College of Medicine, China Medical University, No. 2, Yu-Der Rd, 40447, Taichung City, Taiwan, ROC;Department of Orthopedic Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Rd., 10002, Taipei, Taiwan, ROC; | |
关键词: Biomimetic; Cervical intervertebral body fusion device; Mechanical test; Finite element; | |
DOI : 10.1186/s13018-023-03556-4 | |
received in 2022-10-11, accepted in 2023-01-20, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
BackgroundDegenerative disc disease is one of the most common ailments severely affecting the quality of life in elderly population. Cervical intervertebral body fusion devices are utilized to provide stability after surgical intervention for cervical pathology. In this study, we design a biomimetic porous spinal cage, and perform mechanical simulations to study its performances following American Society for Testing and Materials International (ASTM) standards before manufacturing to improve design process and decrease cost and consumption of material.MethodsThe biomimetic porous Ti-6Al-4 V interbody fusion devices were manufactured by selective laser melting (laser powder bed fusion: LPBF in ISO/ASTM 52900 standard) and subsequently post-processed by using hot isostatic pressing (HIP). Chemical composition, microstructure and the surface morphology were studied. Finite element analysis and in vitro biomechanical test were performed.FindingsThe post heat treatment can optimize its mechanical properties, as the stiffness of the cage decreases to reduce the stress shielding effect between two instrumented bodies. After the HIP treatment, the ductility and the fatigue performance are substantially improved. The use of HIP post-processing can be a necessity to improve the physical properties of customized additive manufacturing processed implants.InterpretationIn conclusion, we have successfully designed a biomimetic porous intervertebral device. HIP post-treatment can improve the bulk material properties, optimize the device with reduced stiffness, decreased stress shielding effect, while still provide appropriate space for bone growth.Clinical significanceThe biomechanical performance of 3-D printed biomimetic porous intervertebral device can be optimized. The ductility and the fatigue performance were substantially improved, the simultaneously decreased stiffness reduces the stress shielding effect between two instrumented bodies; while the biomimetic porous structures provide appropriate space for bone growth, which is important in the patients with osteoporosis.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305116563972ZK.pdf | 8528KB | download | |
41116_2022_35_Article_IEq317.gif | 1KB | Image | download |
41116_2022_35_Article_IEq351.gif | 1KB | Image | download |
Fig. 2 | 694KB | Image | download |
41116_2022_35_Article_IEq369.gif | 1KB | Image | download |
Fig. 2 | 123KB | Image | download |
41116_2022_35_Article_IEq382.gif | 1KB | Image | download |
MediaObjects/12888_2022_4507_MOESM1_ESM.docx | 16KB | Other | download |
41116_2022_35_Article_IEq478.gif | 1KB | Image | download |
41116_2022_35_Article_IEq522.gif | 1KB | Image | download |
41116_2022_35_Article_IEq525.gif | 1KB | Image | download |
41116_2022_35_Article_IEq530.gif | 1KB | Image | download |
MediaObjects/12888_2023_4518_MOESM1_ESM.docx | 56KB | Other | download |
41116_2022_35_Article_IEq532.gif | 1KB | Image | download |
41116_2022_35_Article_IEq533.gif | 1KB | Image | download |
Fig. 1 | 68KB | Image | download |
41116_2022_35_Article_IEq535.gif | 1KB | Image | download |
Fig. 2 | 288KB | Image | download |
41116_2022_35_Article_IEq537.gif | 1KB | Image | download |
41116_2022_35_Article_IEq538.gif | 1KB | Image | download |
41116_2022_35_Article_IEq539.gif | 1KB | Image | download |
Fig. 36 | 48KB | Image | download |
41116_2022_35_Article_IEq541.gif | 1KB | Image | download |
Fig. 1 | 133KB | Image | download |
41116_2022_35_Article_IEq543.gif | 1KB | Image | download |
41116_2022_35_Article_IEq544.gif | 1KB | Image | download |
41116_2022_35_Article_IEq545.gif | 1KB | Image | download |
Fig. 38 | 215KB | Image | download |
【 图 表 】
Fig. 38
41116_2022_35_Article_IEq545.gif
41116_2022_35_Article_IEq544.gif
41116_2022_35_Article_IEq543.gif
Fig. 1
41116_2022_35_Article_IEq541.gif
Fig. 36
41116_2022_35_Article_IEq539.gif
41116_2022_35_Article_IEq538.gif
41116_2022_35_Article_IEq537.gif
Fig. 2
41116_2022_35_Article_IEq535.gif
Fig. 1
41116_2022_35_Article_IEq533.gif
41116_2022_35_Article_IEq532.gif
41116_2022_35_Article_IEq530.gif
41116_2022_35_Article_IEq525.gif
41116_2022_35_Article_IEq522.gif
41116_2022_35_Article_IEq478.gif
41116_2022_35_Article_IEq382.gif
Fig. 2
41116_2022_35_Article_IEq369.gif
Fig. 2
41116_2022_35_Article_IEq351.gif
41116_2022_35_Article_IEq317.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]