期刊论文详细信息
Biotechnology for Biofuels and Bioproducts
Evaluation of oil accumulation and biodiesel property of Lindera glauca fruits among different germplasms and revelation of high oil producing mechanism for developing biodiesel
Methodology
Lingling Shi1  Jinhe Hu1  Zhixiang Zhang1  Zixin Lin1  Shanzhi Lin1  Feng Chen1  Yu Xiu1  Hongjuan Wang2 
[1] Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, 100083, Beijing, China;Department of Biochemistry and Molecular Biology, Yanjing Medical College, Capital Medical University, 101300, Beijing, China;
关键词: Woody biodiesel;    Fuel properties;    Oil accumulation;    Transcriptional regulation;    Provenances;    Lindera glauca;   
DOI  :  10.1186/s13068-023-02265-8
 received in 2022-03-04, accepted in 2023-01-11,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundLindera glauca with rich resource and fruit oil has emerged as novel source of biodiesel in China, but different germplasms show a variation for fruit oil content and FA profile. To develop L. glauca fruit oils as biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield, fuel property and prediction model construction was conducted on the fruits from 8 plus germplasms to select superior genotype for ideal biodiesel production. Another vital focus was to highlight mechanism that govern the differences in oil content and FA profile of different germplasms. The cross-accessions comparisons associated with oil-synthesized gene transcriptional level and oil accumulative amount led to the identification of potential determinants (enzymes, transporters or transcription factors) and regulatory mechanisms responsible for high-quality oil accumulation.ResultsTo select superior germplasm and unravel regulatory mechanism of high oil production for developing L. glauca fruit oils as biodiesel, 8 plus trees (accession LG01/02/03/04/05/06/07/08) with high-yield fruits were selected to evaluate the differences in oil content, FA profile, biodiesel yield and fuel property, and to construct fuel property prediction model, revealing a variation in the levels of fruit oil (45.12–60.95%), monounsaturated FA (52.43–78.46%) and polyunsaturated FA (17.69–38.73%), and biodiesel yield (80.12–98.71%) across different accessions. Of note, LG06 had a maximum yield of oil (60.95%) and biodiesel (98.71%), and ideal proportions of C18:1 (77.89%), C18:2 (14.16%) and C18:3 (1.55%), indicating that fruit oils from accession LG06 was the most suitable for high-quality biodiesel production. To highlight molecular mechanism that govern such differences in oil content and FA composition of different accessions, the quantitative relationship between oil-synthesized gene transcription and oil accumulative amount were conducted on different accessions to identify some vital determinants (enzymes, transporters or transcription factors) with a model of carbon metabolic regulatory for high-quality oil accumulation by an integrated analysis of our recent transcriptome data and qRT-PCR detection. Our findings may present strategies for developing L. glauca fruit oils as biodiesel feedstock and engineering its oil accumulation.ConclusionsThis is the first report on the cross-accessions evaluations of L. glauca fruit oils to determine ideal accession for producing ideal biodiesel, and the associations of oil accumulative amount with oil-synthesized gene transcription was performed to identify some crucial determinants (enzymes, transporters or transcription factors) with metabolic regulation model established for governing high oil production. Our finding may provide molecular basis for new strategies of developing biodiesel resource and engineering oil accumulation.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305116257979ZK.pdf 4826KB PDF download
Fig. 11 165KB Image download
Fig. 56 805KB Image download
Fig. 3 549KB Image download
Fig. 4 1884KB Image download
40798_2022_490_Article_IEq3.gif 1KB Image download
Fig. 3 1505KB Image download
40798_2022_490_Article_IEq9.gif 1KB Image download
Fig. 2 1160KB Image download
Fig. 59 1107KB Image download
【 图 表 】

Fig. 59

Fig. 2

40798_2022_490_Article_IEq9.gif

Fig. 3

40798_2022_490_Article_IEq3.gif

Fig. 4

Fig. 3

Fig. 56

Fig. 11

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  文献评价指标  
  下载次数:15次 浏览次数:7次