Journal of High Energy Physics | |
On non-supersymmetric fixed points in five dimensions | |
Regular Article - Theoretical Physics | |
Matteo Bertolini1  Francesco Mignosa1  Jesse van Muiden1  | |
[1] SISSA, Via Bonomea 265, I-34136, Trieste, Italy;INFN — Sezione di Trieste, Via Valerio 2, I-34127, Trieste, Italy; | |
关键词: Brane Dynamics in Gauge Theories; Field Theories in Higher Dimensions; Supersymmetry Breaking; Scale and Conformal Symmetries; | |
DOI : 10.1007/JHEP10(2022)064 | |
received in 2022-08-19, accepted in 2022-09-28, 发布年份 2022 | |
来源: Springer | |
【 摘 要 】
We generalize recent results regarding the phase space of the mass deformed E1 fixed point to a full class of five-dimensional superconformal field theories, known as X1,N. As in the E1 case, a phase transition occurs as a supersymmetry preserving and a supersymmetry breaking mass deformations are appropriately tuned. The order of such phase transition could not be unequivocally determined in the E1 case. For X1,N, instead, we can show that at large N there exists a regime where the phase transition is second order. Our findings give supporting evidence for the existence of non-supersymmetric fixed points in five dimensions.
【 授权许可】
Unknown
© The Author(s) 2022
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305115515984ZK.pdf | 757KB | download | |
Fig. 66 | 453KB | Image | download |
42004_2022_800_Article_IEq91.gif | 1KB | Image | download |
42004_2022_803_Article_IEq36.gif | 1KB | Image | download |
Fig. 1 | 112KB | Image | download |
42004_2022_800_Article_IEq92.gif | 1KB | Image | download |
12894_2022_1156_Figa_HTML.png | 23KB | Image | download |
Fig. 4 | 235KB | Image | download |
【 图 表 】
Fig. 4
12894_2022_1156_Figa_HTML.png
42004_2022_800_Article_IEq92.gif
Fig. 1
42004_2022_803_Article_IEq36.gif
42004_2022_800_Article_IEq91.gif
Fig. 66
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]