期刊论文详细信息
Heritage Science
BEGL: boundary enhancement with Gaussian Loss for rock-art image segmentation
Research
Yangyang Liu1  Xiaofeng Wang1  Mingquan Zhou2  Chuanping Bai3  Pengbo Zhou4 
[1] School of Information Science and Technology, Northwest University, 1 Xuefu Avenue, Guodu Education Technology Industrial Park, Chang’an District, 710127, Xi’an, China;National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Northwest University, Xi’an, China;School of Information Science and Technology, Northwest University, 1 Xuefu Avenue, Guodu Education Technology Industrial Park, Chang’an District, 710127, Xi’an, China;National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Northwest University, Xi’an, China;Virtual Reality Research Center of Ministry of Education, Beijing Normal University, Beijing, China;School of Information Science and Technology, Northwest University, 1 Xuefu Avenue, Guodu Education Technology Industrial Park, Chang’an District, 710127, Xi’an, China;School of Mathematics and Computer science, Ningxia Normal University, Guyuan, China;Virtual Reality Research Center of Ministry of Education, Beijing Normal University, Beijing, China;
关键词: Petroglyph segmentation;    Boundary enhancement;    Cultural heritage;    Rock-art;   
DOI  :  10.1186/s40494-022-00857-5
 received in 2022-09-29, accepted in 2022-12-31,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

Rock-art has been scratched, carved, and pecked into rock panels all over the world resulting in a huge number of engraved figures on natural rock surfaces that record ancient human life and culture. To preserve and recognize these valuable artifacts of human history, 2D digitization of rock surfaces has become a suitable approach due to the development of powerful 2D image processing techniques in recent years. In this article, we present a novel systematical framework for the segmentation of different petroglyph figures from 2D high-resolution images. The novel boundary enhancement with Gaussian loss (BEGL) function is proposed aiming at refining and smoothing the rock-arts boundaries in the basic UNet architecture. Several experiments on the 3D-pitoti dataset demonstrate that our proposed approach can achieve more accurate boundaries and superior results compared with other loss functions. The comprehensive framework of petroglyph segmentation from 2D high-resolution images provides the foundation for recognizing multiple petroglyph marks. The framework can then be extended to other cultural heritage digital protection domain easily.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305114895092ZK.pdf 2294KB PDF download
MediaObjects/41408_2022_766_MOESM2_ESM.pdf 1187KB PDF download
MediaObjects/12974_2023_2701_MOESM3_ESM.tif 9071KB Other download
42004_2022_800_Article_IEq97.gif 1KB Image download
Fig. 1 590KB Image download
Fig. 2 197KB Image download
Fig. 3 580KB Image download
41116_2022_35_Article_IEq12.gif 1KB Image download
12936_2022_4438_Article_IEq9.gif 1KB Image download
MediaObjects/12951_2022_1516_MOESM1_ESM.docx 1524KB Other download
Fig. 3 1840KB Image download
Fig. 1 471KB Image download
Fig. 4 582KB Image download
41116_2022_35_Article_IEq40.gif 1KB Image download
Fig. 1 1380KB Image download
Fig. 1 82KB Image download
Fig. 6 171KB Image download
MediaObjects/41408_2023_784_MOESM1_ESM.pdf 1800KB PDF download
40249_2022_1049_Article_IEq32.gif 1KB Image download
Fig. 8 176KB Image download
Fig. 9 216KB Image download
40249_2022_1049_Article_IEq34.gif 1KB Image download
Fig. 5 1065KB Image download
40249_2022_1049_Article_IEq38.gif 1KB Image download
Fig. 12 1003KB Image download
Fig. 1 344KB Image download
40249_2022_1049_Article_IEq1118.gif 1KB Image download
Fig. 2 35KB Image download
Fig. 3 159KB Image download
Fig. 1 264KB Image download
Fig. 4 215KB Image download
41116_2022_35_Article_IEq49.gif 1KB Image download
Fig. 2 1129KB Image download
41116_2022_35_Article_IEq50.gif 1KB Image download
40249_2022_1049_Article_IEq2.gif 1KB Image download
【 图 表 】

40249_2022_1049_Article_IEq2.gif

41116_2022_35_Article_IEq50.gif

Fig. 2

41116_2022_35_Article_IEq49.gif

Fig. 4

Fig. 1

Fig. 3

Fig. 2

40249_2022_1049_Article_IEq1118.gif

Fig. 1

Fig. 12

40249_2022_1049_Article_IEq38.gif

Fig. 5

40249_2022_1049_Article_IEq34.gif

Fig. 9

Fig. 8

40249_2022_1049_Article_IEq32.gif

Fig. 6

Fig. 1

Fig. 1

41116_2022_35_Article_IEq40.gif

Fig. 4

Fig. 1

Fig. 3

12936_2022_4438_Article_IEq9.gif

41116_2022_35_Article_IEq12.gif

Fig. 3

Fig. 2

Fig. 1

42004_2022_800_Article_IEq97.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  文献评价指标  
  下载次数:0次 浏览次数:6次