期刊论文详细信息
BMC Medical Research Methodology
Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates
Research
Judith J. M. Rijnhart1  Jos W. R. Twisk2  Martijn W. Heymans2  Lisa C. Bosman2  Thomas Klausch2  Noah A. Schuster2 
[1] College of Public Health, University of South Florida, Tampa, FL, USA;Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands;
关键词: Confounding;    Confounder-adjustment;    Linearity assumption;    Confounder-exposure association;    Confounder-outcome association;    Multivariable regression analysis;    Propensity score methods;   
DOI  :  10.1186/s12874-022-01817-0
 received in 2022-01-31, accepted in 2022-12-08,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundConfounding is a common issue in epidemiological research. Commonly used confounder-adjustment methods include multivariable regression analysis and propensity score methods. Although it is common practice to assess the linearity assumption for the exposure-outcome effect, most researchers do not assess linearity of the relationship between the confounder and the exposure and between the confounder and the outcome before adjusting for the confounder in the analysis. Failing to take the true non-linear functional form of the confounder-exposure and confounder-outcome associations into account may result in an under- or overestimation of the true exposure effect. Therefore, this paper aims to demonstrate the importance of assessing the linearity assumption for confounder-exposure and confounder-outcome associations and the importance of correctly specifying these associations when the linearity assumption is violated.MethodsA Monte Carlo simulation study was used to assess and compare the performance of confounder-adjustment methods when the functional form of the confounder-exposure and confounder-outcome associations were misspecified (i.e., linearity was wrongly assumed) and correctly specified (i.e., linearity was rightly assumed) under multiple sample sizes. An empirical data example was used to illustrate that the misspecification of confounder-exposure and confounder-outcome associations leads to bias.ResultsThe simulation study illustrated that the exposure effect estimate will be biased when for propensity score (PS) methods the confounder-exposure association is misspecified. For methods in which the outcome is regressed on the confounder or the PS, the exposure effect estimate will be biased if the confounder-outcome association is misspecified. In the empirical data example, correct specification of the confounder-exposure and confounder-outcome associations resulted in smaller exposure effect estimates.ConclusionWhen attempting to remove bias by adjusting for confounding, misspecification of the confounder-exposure and confounder-outcome associations might actually introduce bias. It is therefore important that researchers not only assess the linearity of the exposure-outcome effect, but also of the confounder-exposure or confounder-outcome associations depending on the confounder-adjustment method used.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305112630821ZK.pdf 1085KB PDF download
41116_2022_35_Article_IEq95.gif 1KB Image download
41116_2022_35_Article_IEq111.gif 1KB Image download
41116_2022_35_Article_IEq113.gif 1KB Image download
Fig. 20 110KB Image download
41116_2022_35_Article_IEq146.gif 1KB Image download
41116_2022_35_Article_IEq154.gif 1KB Image download
41116_2022_35_Article_IEq165.gif 1KB Image download
41116_2022_35_Article_IEq168.gif 1KB Image download
41116_2022_35_Article_IEq170.gif 1KB Image download
41116_2022_35_Article_IEq175.gif 1KB Image download
41116_2022_35_Article_IEq176.gif 1KB Image download
41116_2022_35_Article_IEq177.gif 1KB Image download
41116_2022_35_Article_IEq178.gif 1KB Image download
41116_2022_35_Article_IEq179.gif 1KB Image download
Fig. 4 201KB Image download
41116_2022_35_Article_IEq180.gif 1KB Image download
【 图 表 】

41116_2022_35_Article_IEq180.gif

Fig. 4

41116_2022_35_Article_IEq179.gif

41116_2022_35_Article_IEq178.gif

41116_2022_35_Article_IEq177.gif

41116_2022_35_Article_IEq176.gif

41116_2022_35_Article_IEq175.gif

41116_2022_35_Article_IEq170.gif

41116_2022_35_Article_IEq168.gif

41116_2022_35_Article_IEq165.gif

41116_2022_35_Article_IEq154.gif

41116_2022_35_Article_IEq146.gif

Fig. 20

41116_2022_35_Article_IEq113.gif

41116_2022_35_Article_IEq111.gif

41116_2022_35_Article_IEq95.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  文献评价指标  
  下载次数:8次 浏览次数:0次