期刊论文详细信息
International Journal of Concrete Structures and Materials
Rheological, Mechanical, Microstructural and Radiation Shielding Properties of Cement Pastes Containing Magnetite (Fe3O4) Nanoparticles
Research
Pawel Sikora1  Paweł Woliński2  Sang-Yeop Chung3  Ahmed M. El-Khayatt4  H. A. Saudi5  Didier Lootens6  Maxime Liard6  Mohamed Abd Elrahman7 
[1] Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany;Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastow 50, 70-311, Szczecin, Poland;Collegium Mazovia Innovative University, Siedlce, Poland;Department of Civil and Environmental Engineering, Sejong University, 05006, Seoul, South Korea;Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University, (IMSIU), Riyadh, Saudi Arabia;Reactor Physics Department, Nuclear Research Centre, Atomic Energy Authority, 13759, Cairo, Egypt;Department of Physics, Faculty of Science, Women Branch, Al-Azhar University, Nasr City, Cairo, Egypt;Sika Technology AG, Sustainability, Zurich, Switzerland;Structural Engineering Department, Mansoura University, 35516, Mansoura, Egypt;
关键词: Cement;    Gamma-ray shielding;    Neutron shielding;    Nanomagnetite;    FeO;    Rheology;   
DOI  :  10.1186/s40069-022-00568-y
 received in 2022-07-16, accepted in 2022-10-07,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

This work examines the influence of iron oxide nanoparticles (Fe3O4 NPs) on neutron and gamma-ray radiation shielding characteristics of Portland cement paste. Experimental evaluations were supplemented with theoretical studies using NXCom program. Portland cement pastes with 5, 10, 15, 20, and 30 wt% of nanomagnetite cement replacement were produced. Moreover, rheological, early strength development, compressive strength, and mercury intrusion porosimetry (MIP) tests were performed. The results showed that increasing the amount of Fe3O4 NPs in a mix leads to a gradual increment in measured viscosity and yield stress. High nano-Fe3O4 contentsubstantially impeded the early strength development process and led to a decrement in the 7- and 28-day compressive strength of cement paste. The MIP studies exhibited a gradual increment in total porosity, and average pore volume, as nano-Fe3O4 content was increased. All the macroscopic cross-sections of slow, fast and thermal neutrons constantly increasedas a result of the addition of magnetite nanoparticles, with their variations being markedly linear. Similarly, gamma attenuation test results indicated that the addition of Fe3O4 powder enhances the shielding capability of paste in the energy range of interest (0.08–2.614 MeV). In conclusion, Fe3O4 nanoparticles can be successfully used in producing lead-free cementitious composites with improved gamma-ray and neutron shielding properties. However, certain drawbacks related to an increment in matrix porosity and thus a decrement in mechanical performance should be taken into account.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305112095558ZK.pdf 3119KB PDF download
Fig. 10 507KB Image download
Fig. 2 385KB Image download
MediaObjects/12888_2022_4438_MOESM8_ESM.pdf 529KB PDF download
MediaObjects/41408_2023_789_MOESM1_ESM.docx 641KB Other download
40798_2022_490_Article_IEq510.gif 1KB Image download
40798_2022_490_Article_IEq57.gif 1KB Image download
Fig. 4 819KB Image download
Fig. 1 245KB Image download
Fig. 3 934KB Image download
Fig. 59 1107KB Image download
Fig. 2 226KB Image download
Fig. 3 2042KB Image download
42004_2022_800_Article_IEq69.gif 1KB Image download
Fig. 3 715KB Image download
Fig. 64 403KB Image download
Fig. 65 1234KB Image download
Fig. 5 1042KB Image download
42004_2022_800_Article_IEq82.gif 1KB Image download
42004_2022_800_Article_IEq83.gif 1KB Image download
42004_2022_800_Article_IEq84.gif 1KB Image download
MediaObjects/12974_2023_2701_MOESM3_ESM.tif 9071KB Other download
MediaObjects/13046_2021_2050_MOESM1_ESM.docx 14KB Other download
Fig. 1 169KB Image download
40249_2022_1049_Article_IEq8.gif 1KB Image download
Fig. 1 1425KB Image download
MediaObjects/12888_2022_4504_MOESM1_ESM.docx 31KB Other download
Fig. 2 73KB Image download
Fig. 5 1240KB Image download
40249_2022_1049_Article_IEq57.gif 1KB Image download
Fig. 2 1426KB Image download
40249_2022_1049_Article_IEq21.gif 1KB Image download
41116_2022_35_Article_IEq33.gif 1KB Image download
Fig. 4 582KB Image download
41116_2022_35_Article_IEq35.gif 1KB Image download
41116_2022_35_Article_IEq36.gif 1KB Image download
40249_2022_1049_Article_IEq26.gif 1KB Image download
41116_2022_35_Article_IEq37.gif 1KB Image download
Fig. 6 900KB Image download
【 图 表 】

Fig. 6

41116_2022_35_Article_IEq37.gif

40249_2022_1049_Article_IEq26.gif

41116_2022_35_Article_IEq36.gif

41116_2022_35_Article_IEq35.gif

Fig. 4

41116_2022_35_Article_IEq33.gif

40249_2022_1049_Article_IEq21.gif

Fig. 2

40249_2022_1049_Article_IEq57.gif

Fig. 5

Fig. 2

Fig. 1

40249_2022_1049_Article_IEq8.gif

Fig. 1

42004_2022_800_Article_IEq84.gif

42004_2022_800_Article_IEq83.gif

42004_2022_800_Article_IEq82.gif

Fig. 5

Fig. 65

Fig. 64

Fig. 3

42004_2022_800_Article_IEq69.gif

Fig. 3

Fig. 2

Fig. 59

Fig. 3

Fig. 1

Fig. 4

40798_2022_490_Article_IEq57.gif

40798_2022_490_Article_IEq510.gif

Fig. 2

Fig. 10

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  文献评价指标  
  下载次数:17次 浏览次数:8次