| International Journal of Concrete Structures and Materials | |
| Rheological, Mechanical, Microstructural and Radiation Shielding Properties of Cement Pastes Containing Magnetite (Fe3O4) Nanoparticles | |
| Research | |
| Pawel Sikora1  Paweł Woliński2  Sang-Yeop Chung3  Ahmed M. El-Khayatt4  H. A. Saudi5  Didier Lootens6  Maxime Liard6  Mohamed Abd Elrahman7  | |
| [1] Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany;Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastow 50, 70-311, Szczecin, Poland;Collegium Mazovia Innovative University, Siedlce, Poland;Department of Civil and Environmental Engineering, Sejong University, 05006, Seoul, South Korea;Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University, (IMSIU), Riyadh, Saudi Arabia;Reactor Physics Department, Nuclear Research Centre, Atomic Energy Authority, 13759, Cairo, Egypt;Department of Physics, Faculty of Science, Women Branch, Al-Azhar University, Nasr City, Cairo, Egypt;Sika Technology AG, Sustainability, Zurich, Switzerland;Structural Engineering Department, Mansoura University, 35516, Mansoura, Egypt; | |
| 关键词: Cement; Gamma-ray shielding; Neutron shielding; Nanomagnetite; FeO; Rheology; | |
| DOI : 10.1186/s40069-022-00568-y | |
| received in 2022-07-16, accepted in 2022-10-07, 发布年份 2022 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
This work examines the influence of iron oxide nanoparticles (Fe3O4 NPs) on neutron and gamma-ray radiation shielding characteristics of Portland cement paste. Experimental evaluations were supplemented with theoretical studies using NXCom program. Portland cement pastes with 5, 10, 15, 20, and 30 wt% of nanomagnetite cement replacement were produced. Moreover, rheological, early strength development, compressive strength, and mercury intrusion porosimetry (MIP) tests were performed. The results showed that increasing the amount of Fe3O4 NPs in a mix leads to a gradual increment in measured viscosity and yield stress. High nano-Fe3O4 contentsubstantially impeded the early strength development process and led to a decrement in the 7- and 28-day compressive strength of cement paste. The MIP studies exhibited a gradual increment in total porosity, and average pore volume, as nano-Fe3O4 content was increased. All the macroscopic cross-sections of slow, fast and thermal neutrons constantly increasedas a result of the addition of magnetite nanoparticles, with their variations being markedly linear. Similarly, gamma attenuation test results indicated that the addition of Fe3O4 powder enhances the shielding capability of paste in the energy range of interest (0.08–2.614 MeV). In conclusion, Fe3O4 nanoparticles can be successfully used in producing lead-free cementitious composites with improved gamma-ray and neutron shielding properties. However, certain drawbacks related to an increment in matrix porosity and thus a decrement in mechanical performance should be taken into account.
【 授权许可】
CC BY
© The Author(s) 2022
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202305112095558ZK.pdf | 3119KB | ||
| Fig. 10 | 507KB | Image | |
| Fig. 2 | 385KB | Image | |
| MediaObjects/12888_2022_4438_MOESM8_ESM.pdf | 529KB | ||
| MediaObjects/41408_2023_789_MOESM1_ESM.docx | 641KB | Other | |
| 40798_2022_490_Article_IEq510.gif | 1KB | Image | |
| 40798_2022_490_Article_IEq57.gif | 1KB | Image | |
| Fig. 4 | 819KB | Image | |
| Fig. 1 | 245KB | Image | |
| Fig. 3 | 934KB | Image | |
| Fig. 59 | 1107KB | Image | |
| Fig. 2 | 226KB | Image | |
| Fig. 3 | 2042KB | Image | |
| 42004_2022_800_Article_IEq69.gif | 1KB | Image | |
| Fig. 3 | 715KB | Image | |
| Fig. 64 | 403KB | Image | |
| Fig. 65 | 1234KB | Image | |
| Fig. 5 | 1042KB | Image | |
| 42004_2022_800_Article_IEq82.gif | 1KB | Image | |
| 42004_2022_800_Article_IEq83.gif | 1KB | Image | |
| 42004_2022_800_Article_IEq84.gif | 1KB | Image | |
| MediaObjects/12974_2023_2701_MOESM3_ESM.tif | 9071KB | Other | |
| MediaObjects/13046_2021_2050_MOESM1_ESM.docx | 14KB | Other | |
| Fig. 1 | 169KB | Image | |
| 40249_2022_1049_Article_IEq8.gif | 1KB | Image | |
| Fig. 1 | 1425KB | Image | |
| MediaObjects/12888_2022_4504_MOESM1_ESM.docx | 31KB | Other | |
| Fig. 2 | 73KB | Image | |
| Fig. 5 | 1240KB | Image | |
| 40249_2022_1049_Article_IEq57.gif | 1KB | Image | |
| Fig. 2 | 1426KB | Image | |
| 40249_2022_1049_Article_IEq21.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq33.gif | 1KB | Image | |
| Fig. 4 | 582KB | Image | |
| 41116_2022_35_Article_IEq35.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq36.gif | 1KB | Image | |
| 40249_2022_1049_Article_IEq26.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq37.gif | 1KB | Image | |
| Fig. 6 | 900KB | Image |
【 图 表 】
Fig. 6
41116_2022_35_Article_IEq37.gif
40249_2022_1049_Article_IEq26.gif
41116_2022_35_Article_IEq36.gif
41116_2022_35_Article_IEq35.gif
Fig. 4
41116_2022_35_Article_IEq33.gif
40249_2022_1049_Article_IEq21.gif
Fig. 2
40249_2022_1049_Article_IEq57.gif
Fig. 5
Fig. 2
Fig. 1
40249_2022_1049_Article_IEq8.gif
Fig. 1
42004_2022_800_Article_IEq84.gif
42004_2022_800_Article_IEq83.gif
42004_2022_800_Article_IEq82.gif
Fig. 5
Fig. 65
Fig. 64
Fig. 3
42004_2022_800_Article_IEq69.gif
Fig. 3
Fig. 2
Fig. 59
Fig. 3
Fig. 1
Fig. 4
40798_2022_490_Article_IEq57.gif
40798_2022_490_Article_IEq510.gif
Fig. 2
Fig. 10
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
PDF