期刊论文详细信息
Journal of Big Data
Robust visual tracking using very deep generative model
Methodology
Abdel-Fattah Attia1  Eman R. AlBasiouny2  Hazem M. Abbas3  Hossam E. Abdelmunim3 
[1] Computer Science and Engineering Department Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt;Computer Science and Engineering Department Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt;Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University, Cairo, Egypt;Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University, Cairo, Egypt;
关键词: Deep learning;    Generative adversarial network;    Fully connected layers;    Visual tracking;   
DOI  :  10.1186/s40537-022-00682-4
 received in 2022-05-16, accepted in 2022-12-25,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

Deep learning algorithms provide visual tracking robustness at an unprecedented level, but realizing an acceptable performance is still challenging because of the natural continuous changes in the features of foreground and background objects over videos. One of the factors that most affects the robustness of tracking algorithms is the choice of network architecture parameters, especially the depth. A robust visual tracking model using a very deep generator (RTDG) was proposed in this study. We constructed our model on an ordinary convolutional neural network (CNN), which consists of feature extraction and binary classifier networks. We integrated a generative adversarial network (GAN) into the CNN to enhance the tracking results through an adversarial learning process performed during the training phase. We used the discriminator as a classifier and the generator as a store that produces unlabeled feature-level data with different appearances by applying masks to the extracted features. In this study, we investigated the role of increasing the number of fully connected (FC) layers in adversarial generative networks and their impact on robustness. We used a very deep FC network with 22 layers as a high-performance generator for the first time. This generator is used via adversarial learning to augment the positive samples to reduce the gap between the hungry deep learning algorithm and the available training data to achieve robust visual tracking. The experiments showed that the proposed framework performed well against state-of-the-art trackers on OTB-100, VOT2019, LaSOT and UAVDT benchmark datasets.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305111892833ZK.pdf 2208KB PDF download
41116_2022_35_Article_IEq147.gif 1KB Image download
Fig. 2 682KB Image download
41116_2022_35_Article_IEq395.gif 1KB Image download
12888_2022_4443_Article_IEq4.gif 1KB Image download
41116_2022_35_Article_IEq406.gif 1KB Image download
41116_2022_35_Article_IEq409.gif 1KB Image download
41116_2022_35_Article_IEq413.gif 1KB Image download
12888_2022_4443_Article_IEq9.gif 1KB Image download
41116_2022_35_Article_IEq457.gif 1KB Image download
41116_2022_35_Article_IEq476.gif 1KB Image download
41116_2022_35_Article_IEq492.gif 1KB Image download
Fig. 1 125KB Image download
Fig. 1 214KB Image download
41116_2022_35_Article_IEq525.gif 1KB Image download
Fig. 2 90KB Image download
Fig. 33 734KB Image download
41116_2022_35_Article_IEq528.gif 1KB Image download
41116_2022_35_Article_IEq529.gif 1KB Image download
41116_2022_35_Article_IEq530.gif 1KB Image download
MediaObjects/12888_2023_4518_MOESM1_ESM.docx 56KB Other download
41116_2022_35_Article_IEq532.gif 1KB Image download
41116_2022_35_Article_IEq533.gif 1KB Image download
Fig. 1 68KB Image download
41116_2022_35_Article_IEq535.gif 1KB Image download
Fig. 2 288KB Image download
41116_2022_35_Article_IEq537.gif 1KB Image download
41116_2022_35_Article_IEq538.gif 1KB Image download
Fig. 36 48KB Image download
41116_2022_35_Article_IEq541.gif 1KB Image download
【 图 表 】

41116_2022_35_Article_IEq541.gif

Fig. 36

41116_2022_35_Article_IEq538.gif

41116_2022_35_Article_IEq537.gif

Fig. 2

41116_2022_35_Article_IEq535.gif

Fig. 1

41116_2022_35_Article_IEq533.gif

41116_2022_35_Article_IEq532.gif

41116_2022_35_Article_IEq530.gif

41116_2022_35_Article_IEq529.gif

41116_2022_35_Article_IEq528.gif

Fig. 33

Fig. 2

41116_2022_35_Article_IEq525.gif

Fig. 1

Fig. 1

41116_2022_35_Article_IEq492.gif

41116_2022_35_Article_IEq476.gif

41116_2022_35_Article_IEq457.gif

12888_2022_4443_Article_IEq9.gif

41116_2022_35_Article_IEq413.gif

41116_2022_35_Article_IEq409.gif

41116_2022_35_Article_IEq406.gif

12888_2022_4443_Article_IEq4.gif

41116_2022_35_Article_IEq395.gif

Fig. 2

41116_2022_35_Article_IEq147.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  文献评价指标  
  下载次数:6次 浏览次数:0次