| Acta Neuropathologica Communications | |
| AI-based MRI auto-segmentation of brain tumor in rodents, a multicenter study | |
| Research | |
| Yicheng Ni1  Johan V. Swinnen1  Yuanbo Feng1  Shuncong Wang1  Jie Yu1  Xin Pang2  Frederik de Keyzer3  | |
| [1] Biomedical Group, Campus Gasthuisberg, KU Leuven, 3000, Leuven, Belgium;Biomedical Group, Campus Gasthuisberg, KU Leuven, 3000, Leuven, Belgium;Faculty of Economics and Business, KU Leuven, 3000, Leuven, Belgium;Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000, Leuven, Belgium; | |
| 关键词: Artificial intelligence; Brain malignancy; MRI; Segmentation; Rodent; | |
| DOI : 10.1186/s40478-023-01509-w | |
| received in 2022-11-23, accepted in 2023-01-06, 发布年份 2023 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
Automatic segmentation of rodent brain tumor on magnetic resonance imaging (MRI) may facilitate biomedical research. The current study aims to prove the feasibility for automatic segmentation by artificial intelligence (AI), and practicability of AI-assisted segmentation. MRI images, including T2WI, T1WI and CE-T1WI, of brain tumor from 57 WAG/Rij rats in KU Leuven and 46 mice from the cancer imaging archive (TCIA) were collected. A 3D U-Net architecture was adopted for segmentation of tumor bearing brain and brain tumor. After training, these models were tested with both datasets after Gaussian noise addition. Reduction of inter-observer disparity by AI-assisted segmentation was also evaluated. The AI model segmented tumor-bearing brain well for both Leuven and TCIA datasets, with Dice similarity coefficients (DSCs) of 0.87 and 0.85 respectively. After noise addition, the performance remained unchanged when the signal–noise ratio (SNR) was higher than two or eight, respectively. For the segmentation of tumor lesions, AI-based model yielded DSCs of 0.70 and 0.61 for Leuven and TCIA datasets respectively. Similarly, the performance is uncompromised when the SNR was over two and eight respectively. AI-assisted segmentation could significantly reduce the inter-observer disparities and segmentation time in both rats and mice. Both AI models for segmenting brain or tumor lesions could improve inter-observer agreement and therefore contributed to the standardization of the following biomedical studies.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202305111153612ZK.pdf | 1505KB | ||
| 41116_2022_35_Article_IEq317.gif | 1KB | Image | |
| Fig. 1 | 917KB | Image | |
| 41116_2022_35_Article_IEq337.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq349.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq356.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq359.gif | 1KB | Image |
【 图 表 】
41116_2022_35_Article_IEq359.gif
41116_2022_35_Article_IEq356.gif
41116_2022_35_Article_IEq349.gif
41116_2022_35_Article_IEq337.gif
Fig. 1
41116_2022_35_Article_IEq317.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
PDF