期刊论文详细信息
BMC Pregnancy and Childbirth
Mechanical ventilation and death in pregnant patients admitted for COVID-19: a prognostic analysis from the Brazilian COVID-19 registry score
Research Article
Daniela Ponce1  Patryk Marques da Silva Rosa2  Petrônio José de Lima Martelli3  Eric Boersma4  Zilma Silveira Nogueira Reis5  Regina Amélia Lopes Pessoa de Aguiar5  Polianna Delfino-Pereira6  Milena Soriano Marcolino7  Lucas Emanuel Ferreira Ramos8  Magda Carvalho Pires8  Marcia Ffner Tolfo9  Carolina Cunha Matos1,10  Angélica Gomides dos Reis Gomes1,11  Claudete Rempel1,12  Bruno Porto Pessoa1,13  Luanna Silva Monteiro Menezes1,14  Gisele Alsina Nader Bastos1,15  Milton Henriques Guimarães Júnior1,16  Gabriela Petry Crestani1,17  Andresa Fontoura Garbini1,18  Rafaela Santos Charão de Almeida1,18  Fernando Anschau1,18  Felipe Ferraz Martins Graça Aranha1,19  Genna Maira Santos Grizende2,20  Marcelo Carneiro2,21  Christiane Corrêa Rodrigues Cimini2,22  Raphael Castro Martins2,23  Giulia Maria dos Santos Goedert2,24  Maria Augusta Matos Corrêa2,25  Pamela Andrea Alves Durães2,26  Thaís Lorenna Souza Sales2,27  Samuel Penchel Alvarenga2,27  Mariani Maciel de Amorim2,28  Karina Paula Medeiros Prado Martins2,29 
[1] Botucatu Medical School, Universidade Estadual Paulista “Júlio de Mesquita Filho” and Hospital das Clínicas da Faculdade de Medicina de Botucatu, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, Brazil;Centro Universitário de Belo Horizonte, Av. Professor Werneck, 1685, Belo Horizonte, Brazil;Centro de Ciências Médicas, Universidade Federal de Pernambuco, Hospital das Clínicas da Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, Brazil;Department of Cardiology, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands;Department of Gynecology and Obstetrics, University Hospital. Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Department of Internal Medicine, Medical School, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Institute for Health Technology Assessment (IATS/CNPq), R. Ramiro Barcelos, 2359, Porto Alegre, Brazil;Department of Internal Medicine, Medical School, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Institute for Health Technology Assessment (IATS/CNPq), R. Ramiro Barcelos, 2359, Porto Alegre, Brazil;University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Telehealth Center, University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena 190, Belo Horizonte, Brazil;Department of Statistics, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, Brazil;Faculdade Integrada de Santa Maria, R. José do Patrocínio, 26, Santa Maria, Brazil;Faculdade de Ciências Médicas de Minas Gerais, Alameda Ezequiel Dias, 275, Belo Horizonte, Brazil;Hospitais da Rede Mater Dei, Av. do Contorno, 9000, Belo Horizonte, Brazil;Hospital Bruno Born, Av. Benjamin Constant, 881, Lajeado, Brazil;Hospital Júlia Kubitschek, R. Dr. Cristiano Rezende, 2745, Belo Horizonte, Brazil;Hospital Metropolitano Odilon Behrens, R. Formiga, 50, Belo Horizonte, Brazil;Hospital Moinhos de Vento, R. Ramiro Barcelos, 910, Porto Alegre, Brazil;Hospital Márcio Cunha, Av. Kiyoshi Tsunawaki, 41, Ipatinga, Brazil;Hospital Mãe de Deus, R. José de Alencar, 286, Porto Alegre, Brazil;Hospital Nossa Senhora da Conceição and Hospital Cristo Redentor, Av. Francisco Trein, 326, Porto Alegre, Brazil;Hospital SOS Cardio, Rodovia, SC-401, 121, Florianópolis, Brazil;Hospital Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales, 1111, Belo Horizonte, Brazil;Hospital Santa Cruz, R. Fernando Abott, 174, Santa Cruz do Sul, Brazil;Hospital Santa Rosália, R. Dr. Onófre, 575, Teófilo Otoni, Brazil;Mucuri Medical School, Universidade Federal dos Vales do Jequitinhonha e Mucuri, R. Cruzeiro, 01, Teófilo Otoni, Brazil;Hospital Tacchini, R. Dr. José Mário Mônaco, 358, Bento Gonçalves, Brazil;Medical School, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Brazil;Mucuri Medical School, Universidade Federal dos Vales do Jequitinhonha e Mucuri, R. Cruzeiro, 01, Teófilo Otoni, Brazil;Pontifícia Universidade Católica de Minas Gerais, R. do Rosário, 1081, Betim, Brazil;Universidade Federal de São João del-Rei, R. Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil;Universidade Luterana do Brasil, Av. Farroupilha, 8001, Canoas, Brazil;University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;
关键词: COVID-19;    Pregnant women;    Clinical decision rules;    Mortality;    Artificial respiration;    Prognosis;   
DOI  :  10.1186/s12884-022-05310-w
 received in 2021-11-02, accepted in 2022-12-14,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundThe assessment of clinical prognosis of pregnant COVID-19 patients at hospital presentation is challenging, due to physiological adaptations during pregnancy. Our aim was to assess the performance of the ABC2-SPH score to predict in-hospital mortality and mechanical ventilation support in pregnant patients with COVID-19, to assess the frequency of adverse pregnancy outcomes, and characteristics of pregnant women who died.MethodsThis multicenter cohort included consecutive pregnant patients with COVID-19 admitted to the participating hospitals, from April/2020 to March/2022. Primary outcomes were in-hospital mortality and the composite outcome of mechanical ventilation support and in-hospital mortality. Secondary endpoints were pregnancy outcomes. The overall discrimination of the model was presented as the area under the receiver operating characteristic curve (AUROC). Overall performance was assessed using the Brier score.ResultsFrom 350 pregnant patients (median age 30 [interquartile range (25.2, 35.0)] years-old]), 11.1% had hypertensive disorders, 19.7% required mechanical ventilation support and 6.0% died. The AUROC for in-hospital mortality and for the composite outcome were 0.809 (95% IC: 0.641–0.944) and 0.704 (95% IC: 0.617–0.792), respectively, with good overall performance (Brier = 0.0384 and 0.1610, respectively). Calibration was good for the prediction of in-hospital mortality, but poor for the composite outcome. Women who died had a median age 4 years-old higher, higher frequency of hypertensive disorders (38.1% vs. 9.4%, p < 0.001) and obesity (28.6% vs. 10.6%, p = 0.025) than those who were discharged alive, and their newborns had lower birth weight (2000 vs. 2813, p = 0.001) and five-minute Apgar score (3.0 vs. 8.0, p < 0.001).ConclusionsThe ABC2-SPH score had good overall performance for in-hospital mortality and the composite outcome mechanical ventilation and in-hospital mortality. Calibration was good for the prediction of in-hospital mortality, but it was poor for the composite outcome. Therefore, the score may be useful to predict in-hospital mortality in pregnant patients with COVID-19, in addition to clinical judgment. Newborns from women who died had lower birth weight and Apgar score than those who were discharged alive.

【 授权许可】

CC BY   
© The Author(s) 2023. corrected publication 2023

【 预 览 】
附件列表
Files Size Format View
RO202305110479104ZK.pdf 1444KB PDF download
Fig. 2 703KB Image download
40249_2022_1049_Article_IEq53.gif 1KB Image download
MediaObjects/13041_2023_993_MOESM1_ESM.docx 206KB Other download
Fig. 1 2700KB Image download
Fig. 1 169KB Image download
40249_2022_1049_Article_IEq8.gif 1KB Image download
【 图 表 】

40249_2022_1049_Article_IEq8.gif

Fig. 1

Fig. 1

40249_2022_1049_Article_IEq53.gif

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  文献评价指标  
  下载次数:4次 浏览次数:2次