期刊论文详细信息
BMC Medical Informatics and Decision Making
Neural-signature methods for structured EHR prediction
Research
Paidi Creed1  Spiros Denaxas2  Andre Vauvelle2 
[1] BenevolentAI, 4-8 Maple St, London, UK;Institute of Health Informatics, University College London, 222 Euston Road, London, UK;
关键词: Machine learning;    Electronic healthcare records;    Signature methods;   
DOI  :  10.1186/s12911-022-02055-6
 received in 2022-01-24, accepted in 2022-11-17,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

Models that can effectively represent structured Electronic Healthcare Records (EHR) are central to an increasing range of applications in healthcare. Due to the sequential nature of health data, Recurrent Neural Networks have emerged as the dominant component within state-of-the-art architectures. The signature transform represents an alternative modelling paradigm for sequential data. This transform provides a non-learnt approach to creating a fixed vector representation of temporal features and has shown strong performances across an increasing number of domains, including medical data. However, the signature method has not yet been applied to structured EHR data. To this end, we follow recent work that enables the signature to be used as a differentiable layer within a neural architecture enabling application in high dimensional domains where calculation would have previously been intractable. Using a heart failure prediction task as an exemplar, we provide an empirical evaluation of different variations of the signature method and compare against state-of-the-art baselines. This first application of neural-signature methods in real-world healthcare data shows a competitive performance when compared to strong baselines and thus warrants further investigation within the health domain.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305069445620ZK.pdf 1702KB PDF download
Fig. 1 79KB Image download
Fig. 1 1332KB Image download
Fig. 6 1149KB Image download
MediaObjects/12888_2022_4409_MOESM1_ESM.pdf 125KB PDF download
Fig. 3 348KB Image download
Fig. 3 5655KB Image download
12888_2022_4322_Article_IEq10.gif 1KB Image download
12888_2022_4322_Article_IEq11.gif 1KB Image download
Fig. 2 30KB Image download
MediaObjects/12888_2022_4322_MOESM1_ESM.docx 21KB Other download
12951_2022_1749_Article_IEq1.gif 1KB Image download
Fig. 1 122KB Image download
Fig. 7 1696KB Image download
Fig. 2 518KB Image download
Fig. 1 990KB Image download
Fig. 1 1067KB Image download
12864_2022_9026_Article_IEq187.gif 1KB Image download
MediaObjects/41408_2022_770_MOESM1_ESM.docx 1380KB Other download
Fig. 3 372KB Image download
Fig. 3 280KB Image download
MediaObjects/40360_2022_634_MOESM1_ESM.doc 1006KB Other download
Fig. 4 98KB Image download
12951_2022_1749_Article_IEq3.gif 1KB Image download
Fig. 5 197KB Image download
Fig. 1 888KB Image download
Fig. 1 773KB Image download
Fig. 6 172KB Image download
Fig. 4 5742KB Image download
MediaObjects/12888_2022_4463_MOESM1_ESM.pdf 459KB PDF download
Fig. 5 547KB Image download
Fig. 5 525KB Image download
Fig. 2 630KB Image download
12951_2022_1749_Article_IEq6.gif 1KB Image download
Fig. 2 1141KB Image download
12951_2022_1749_Article_IEq8.gif 1KB Image download
MediaObjects/12888_2022_4467_MOESM1_ESM.docx 102KB Other download
Fig. 3 924KB Image download
Fig. 4 413KB Image download
Fig. 2 1679KB Image download
Fig. 1 236KB Image download
MediaObjects/12888_2022_4400_MOESM1_ESM.pdf 47KB PDF download
13068_2022_2229_Article_IEq2.gif 1KB Image download
13068_2022_2229_Article_IEq3.gif 1KB Image download
13068_2022_2229_Article_IEq4.gif 1KB Image download
Fig. 7 994KB Image download
Fig. 1 252KB Image download
MediaObjects/42004_2022_778_MOESM4_ESM.zip 7457KB Package download
Fig. 1 1535KB Image download
Fig. 2 747KB Image download
12864_2022_9026_Article_IEq225.gif 1KB Image download
Fig. 2 84KB Image download
Fig. 2 995KB Image download
Fig. 6 1402KB Image download
12888_2022_4137_Article_IEq1.gif 1KB Image download
12888_2022_4137_Article_IEq2.gif 1KB Image download
Fig. 3 858KB Image download
Fig. 5 1959KB Image download
MediaObjects/40170_2022_299_MOESM2_ESM.docx 2894KB Other download
Fig. 4 2985KB Image download
Fig. 2 108KB Image download
Fig. 3 160KB Image download
Fig. 4 851KB Image download
12902_2022_1242_Article_IEq1.gif 1KB Image download
862KB Image download
Fig. 2 1620KB Image download
Fig. 5 529KB Image download
42004_2022_782_Tabh_HTML.png 12KB Image download
MediaObjects/12951_2022_1735_MOESM1_ESM.docx 15KB Other download
MediaObjects/12951_2022_1735_MOESM2_ESM.jpg 69KB Other download
Fig. 6 395KB Image download
Fig. 1 149KB Image download
12864_2022_9026_Article_IEq246.gif 1KB Image download
Fig. 2 612KB Image download
【 图 表 】

Fig. 2

12864_2022_9026_Article_IEq246.gif

Fig. 1

Fig. 6

42004_2022_782_Tabh_HTML.png

Fig. 5

Fig. 2

12902_2022_1242_Article_IEq1.gif

Fig. 4

Fig. 3

Fig. 2

Fig. 4

Fig. 5

Fig. 3

12888_2022_4137_Article_IEq2.gif

12888_2022_4137_Article_IEq1.gif

Fig. 6

Fig. 2

Fig. 2

12864_2022_9026_Article_IEq225.gif

Fig. 2

Fig. 1

Fig. 1

Fig. 7

13068_2022_2229_Article_IEq4.gif

13068_2022_2229_Article_IEq3.gif

13068_2022_2229_Article_IEq2.gif

Fig. 1

Fig. 2

Fig. 4

Fig. 3

12951_2022_1749_Article_IEq8.gif

Fig. 2

12951_2022_1749_Article_IEq6.gif

Fig. 2

Fig. 5

Fig. 5

Fig. 4

Fig. 6

Fig. 1

Fig. 1

Fig. 5

12951_2022_1749_Article_IEq3.gif

Fig. 4

Fig. 3

Fig. 3

12864_2022_9026_Article_IEq187.gif

Fig. 1

Fig. 1

Fig. 2

Fig. 7

Fig. 1

12951_2022_1749_Article_IEq1.gif

Fig. 2

12888_2022_4322_Article_IEq11.gif

12888_2022_4322_Article_IEq10.gif

Fig. 3

Fig. 3

Fig. 6

Fig. 1

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  文献评价指标  
  下载次数:4次 浏览次数:0次