期刊论文详细信息
Movement Ecology
Using pseudo-absence models to test for environmental selection in marine movement ecology: the importance of sample size and selection strength
Research
Aaron Carlisle1  Matthew J. Oliver1  Jérôme Pinti1  Matthew Shatley1  Barbara A. Block2 
[1] College of Earth, Ocean, and Environment, University of Delaware, 19958, Lewes, DE, USA;Hopkins Marine Station, Biology Department, Stanford University, 93950, Pacific Grove, CA, USA;
关键词: Movement ecology;    Null models;    Brownian motion;    Random walks;    Biotelemetry;    Habitat selection;    Environmental selection;   
DOI  :  10.1186/s40462-022-00362-1
 received in 2022-08-26, accepted in 2022-12-19,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundUnderstanding the selection of environmental conditions by animals requires knowledge of where they are, but also of where they could have been. Presence data can be accurately estimated by direct sampling, sightings, or through electronic tag deployments. However, absence data are harder to determine because absences are challenging to measure in an uncontrolled setting. To address this problem, ecologists have developed different methods for generating pseudo-absence data relying on theoretical movement models. These null models represent the movement of environmentally naive individuals, creating a set of locations that animals could have been if they were not exhibiting environmental selection.MethodsHere, we use four different kinds of null animal movement models—Brownian motion, Lévy walks, Correlated random walks, and Joint correlated random walks to test the ability and power of each of these null movement models to serve as appropriate animal absence models. We use Kolmogorov-Smirnov tests to detect environmental selection using two data sets, one of simulated animal tracks biased towards warmer sea surface temperatures, and one of 57 observed blue shark tracks of unknown sea surface temperature selection.ResultsThe four different types of movement models showed minimal difference in the ability to serve as appropriate null models for environmental selection studies. Selection strength and sample size were more important in detecting true environmental selection. We show that this method can suffer from high false positive rates, especially in the case where animals are not selecting for specific environments. We provide estimates of test accuracy at different sample sizes and selection strengths to avoid false positives when using this method.ConclusionWe show how movement models can be used to generate pseudo-absences and test for habitat selection in marine organisms. While this approach efficiently detects environmental selection in marine organisms, it cannot detect the underlying mechanisms driving this selection.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305067640603ZK.pdf 5938KB PDF download
Fig. 1 163KB Image download
Fig. 6 663KB Image download
Fig. 6 1500KB Image download
MediaObjects/12954_2022_723_MOESM1_ESM.docx 29KB Other download
Fig. 2 247KB Image download
Fig. 1 3487KB Image download
Fig. 7 413KB Image download
Fig. 8 942KB Image download
Fig. 1 68KB Image download
Fig. 6 173KB Image download
MediaObjects/12974_2022_2679_MOESM1_ESM.docx 2847KB Other download
Fig. 9 74KB Image download
Fig. 1 284KB Image download
Fig. 6 359KB Image download
12936_2022_4386_Article_IEq169.gif 1KB Image download
MediaObjects/41408_2022_776_MOESM1_ESM.pdf 2021KB PDF download
Fig. 1 324KB Image download
Fig. 1 488KB Image download
40644_2022_517_Article_IEq1.gif 1KB Image download
Fig. 1 112KB Image download
Fig. 2 496KB Image download
Fig. 2 621KB Image download
Fig. 2 221KB Image download
Fig. 4 52KB Image download
12936_2022_4386_Article_IEq179.gif 1KB Image download
Fig. 3 302KB Image download
Fig. 7 254KB Image download
Fig. 10 68KB Image download
12936_2022_4386_Article_IEq183.gif 1KB Image download
Fig. 4 252KB Image download
Fig. 1 240KB Image download
Fig. 9 614KB Image download
Fig. 2 1630KB Image download
Fig. 11 97KB Image download
MediaObjects/13046_2022_2501_MOESM1_ESM.pdf 8331KB PDF download
Fig. 6 300KB Image download
969KB Image download
Fig. 6 112KB Image download
Fig. 1 852KB Image download
Fig. 7 225KB Image download
Fig. 3 228KB Image download
Fig. 2 497KB Image download
Fig. 1 932KB Image download
MediaObjects/41408_2022_757_MOESM1_ESM.pdf 622KB PDF download
Fig. 13 590KB Image download
Fig. 1 884KB Image download
Fig. 1 2051KB Image download
Fig. 3 240KB Image download
Fig. 1 111KB Image download
Fig. 2 505KB Image download
Scheme 1 1166KB Image download
40560_2022_645_Article_IEq2.gif 1KB Image download
40560_2022_645_Article_IEq3.gif 1KB Image download
Fig. 2 1121KB Image download
Fig. 4 2160KB Image download
MediaObjects/40560_2022_645_MOESM1_ESM.docx 1548KB Other download
MediaObjects/12974_2022_2667_MOESM7_ESM.xlsx 2852KB Other download
Fig. 1 427KB Image download
Fig. 1 328KB Image download
Fig. 4 942KB Image download
Fig. 1 219KB Image download
40517_2022_243_Article_IEq2.gif 1KB Image download
【 图 表 】

40517_2022_243_Article_IEq2.gif

Fig. 1

Fig. 4

Fig. 1

Fig. 1

Fig. 4

Fig. 2

40560_2022_645_Article_IEq3.gif

40560_2022_645_Article_IEq2.gif

Scheme 1

Fig. 2

Fig. 1

Fig. 3

Fig. 1

Fig. 1

Fig. 13

Fig. 1

Fig. 2

Fig. 3

Fig. 7

Fig. 1

Fig. 6

Fig. 6

Fig. 11

Fig. 2

Fig. 9

Fig. 1

Fig. 4

12936_2022_4386_Article_IEq183.gif

Fig. 10

Fig. 7

Fig. 3

12936_2022_4386_Article_IEq179.gif

Fig. 4

Fig. 2

Fig. 2

Fig. 2

Fig. 1

40644_2022_517_Article_IEq1.gif

Fig. 1

Fig. 1

12936_2022_4386_Article_IEq169.gif

Fig. 6

Fig. 1

Fig. 9

Fig. 6

Fig. 1

Fig. 8

Fig. 7

Fig. 1

Fig. 2

Fig. 6

Fig. 6

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  文献评价指标  
  下载次数:11次 浏览次数:1次