期刊论文详细信息
BMC Genomics
Comparative genomic analysis of Citrobacter sp. XT1-2-2 reveals insights into the molecular mechanism of microbial immobilization of heavy metals
Research
Zujiao Fu1  Yilu Li1  Yushuang Wang1  Wei Cheng1  Min Zhang1  Zhudong Liu1  Shandong Wu1  Xiaowu Wei1  Dongxia Du1  Zhaohui Guo2  Shiping Shan2 
[1] Hunan Institute of Microbiology, 410009, Changsha, Hunan, China;Hunan Institute of Microbiology, 410009, Changsha, Hunan, China;Hunan Engineering and Technology Research Center of Agricultural Microbiology Application, 410009, Changsha, Hunan, China;
关键词: Citrobacter;    Cadmium;    Microbial immobilization;    Rice;    Sulfate reduction pathway;   
DOI  :  10.1186/s12864-022-09069-4
 received in 2022-05-12, accepted in 2022-12-05,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundIn our previous study, Citrobacter sp. XT1-2-2 was isolated from high cadmium-contaminated soils, and demonstrated an excellent ability to decrease the bioavailability of cadmium in the soil and inhibit cadmium uptake in rice. In addition, the strain XT1-2-2 could significantly promote rice growth and increase rice biomass. Therefore, the strain XT1-2-2 shows great potential for remediation of cadmium -contaminated soils. However, the genome sequence of this organism has not been reported so far. ResultsHere the basic characteristics and genetic diversity of the strain XT1-2-2 were described, together with the draft genome and comparative genomic results. The strain XT1-2-2 is 5040459 bp long with an average G + C content of 52.09%, and contains a total of 4801 genes. Putative genomic islands were predicted in the genome of Citrobacter sp. XT1-2-2. All genes of a complete set of sulfate reduction pathway and various putative heavy metal resistance genes in the genome were identified and analyzed.ConclusionsThese analytical results provide insights into the genomic basis of microbial immobilization of heavy metals.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305067437020ZK.pdf 4551KB PDF download
Fig. 1 345KB Image download
1560KB Image download
Fig. 3 35KB Image download
Fig. 4 370KB Image download
MediaObjects/12951_2022_1737_MOESM2_ESM.zip 2KB Package download
40517_2022_243_Article_IEq20.gif 1KB Image download
Fig. 1 154KB Image download
40708_2022_178_Article_IEq53.gif 1KB Image download
40249_2022_1045_Article_IEq1.gif 1KB Image download
41408_2022_764_Article_IEq10.gif 1KB Image download
41408_2022_764_Article_IEq25.gif 1KB Image download
41408_2022_764_Article_IEq26.gif 1KB Image download
Fig. 1 171KB Image download
41408_2022_764_Article_IEq28.gif 1KB Image download
MediaObjects/12951_2022_1742_MOESM1_ESM.docx 891KB Other download
Fig. 8 956KB Image download
Fig. 2 1229KB Image download
MediaObjects/13046_2020_1633_MOESM2_ESM.tif 2797KB Other download
Fig. 1 484KB Image download
MediaObjects/13041_2022_983_MOESM1_ESM.pptx 4352KB Other download
Fig. 1 1351KB Image download
Fig. 1 892KB Image download
【 图 表 】

Fig. 1

Fig. 1

Fig. 1

Fig. 2

Fig. 8

41408_2022_764_Article_IEq28.gif

Fig. 1

41408_2022_764_Article_IEq26.gif

41408_2022_764_Article_IEq25.gif

41408_2022_764_Article_IEq10.gif

40249_2022_1045_Article_IEq1.gif

40708_2022_178_Article_IEq53.gif

Fig. 1

40517_2022_243_Article_IEq20.gif

Fig. 4

Fig. 3

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  文献评价指标  
  下载次数:34次 浏览次数:2次