Rice | |
Enhancement of Heat and Drought Stress Tolerance in Rice by Genetic Manipulation: A Systematic Review | |
Review | |
Jianping Yu1  Lianguang Shang2  Yingxue Yang2  Qian Qian3  | |
[1] College of Plant Science and Technology, Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, 102206, Beijing, China;Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China;Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China;China National Rice Research Institute (CNRRI), Chinese Academy of Agricultural Sciences, 311401, Hangzhou, China; | |
关键词: Rice; Heat stress; Drought stress; Regulation; Tolerance; | |
DOI : 10.1186/s12284-022-00614-z | |
received in 2022-01-21, accepted in 2022-12-13, 发布年份 2022 | |
来源: Springer | |
【 摘 要 】
As a result of global warming, plants are subjected to ever-increasing abiotic stresses including heat and drought. Drought stress frequently co-occurs with heat stress as a result of water evaporation. These stressors have adverse effects on crop production, which in turn affects human food security. Rice is a major food resource grown widely in crop-producing regions throughout the world. However, increasingly common heat and drought stresses in growth regions can have negative impacts on seedling morphogenesis, reproductive organ establishment, overall yield, and quality. This review centers on responses to heat and drought stress in rice. Current knowledge of molecular regulation mechanisms is summarized. We focus on approaches to cope with heat and drought stress, both at the genetic level and from an agricultural practice perspective. This review establishes a basis for improving rice stress tolerance, grain quality, and yield for human benefit.
【 授权许可】
CC BY
© The Author(s) 2022
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305065780823ZK.pdf | 1214KB | download | |
Fig. 6 | 300KB | Image | download |
MediaObjects/40560_2022_645_MOESM1_ESM.docx | 1548KB | Other | download |
【 图 表 】
Fig. 6
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]
- [90]
- [91]
- [92]
- [93]
- [94]
- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
- [102]
- [103]
- [104]
- [105]
- [106]
- [107]
- [108]
- [109]
- [110]
- [111]
- [112]
- [113]
- [114]
- [115]
- [116]
- [117]
- [118]
- [119]
- [120]
- [121]
- [122]
- [123]
- [124]
- [125]
- [126]
- [127]
- [128]
- [129]
- [130]
- [131]
- [132]
- [133]
- [134]
- [135]
- [136]
- [137]
- [138]
- [139]
- [140]
- [141]
- [142]
- [143]
- [144]
- [145]
- [146]
- [147]
- [148]
- [149]
- [150]
- [151]
- [152]
- [153]
- [154]
- [155]
- [156]
- [157]