期刊论文详细信息
Advances in Aerodynamics
High-dimensional aerodynamic data modeling using a machine learning method based on a convolutional neural network
Research
Wen-Zheng Wang1  Zhong-Hua Han2  Chen-Zhou Xu2  Bo-Wen Zan2  Ming-Qi Liu2 
[1] Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, 611731, Chengdu, China;Institute of Aerodynamic and Multidisciplinary Design Optimization, National Key Laboratory of Science and Technology On Aerodynamic Design and Research, School of Aeronautics, Northwestern Polytechnical University, 710072, Xi’an, China;
关键词: Aerodynamic data modeling;    High-dimensional problem;    Machine learning;    Convolutional neural network;    Computational fluid dynamics;   
DOI  :  10.1186/s42774-022-00128-8
 received in 2022-07-12, accepted in 2022-10-13,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

Modeling high-dimensional aerodynamic data presents a significant challenge in aero-loads prediction, aerodynamic shape optimization, flight control, and simulation. This article develops a machine learning approach based on a convolutional neural network (CNN) to address this problem. A CNN can implicitly distill features underlying the data. The number of parameters to be trained can be significantly reduced because of its local connectivity and parameter-sharing properties, which is favorable for solving high-dimensional problems in which the training cost can be prohibitive. A hypersonic wing similar to the Sanger aerospace plane carrier wing is employed as the test case to demonstrate the CNN-based modeling method. First, the wing is parameterized by the free-form deformation method, and 109 variables incorporating flight status and aerodynamic shape variables are defined as model input. Second, more than 7000 sample points generated by the Latin hypercube sampling method are evaluated by performing computational fluid dynamics simulations using a Reynolds-averaged Navier–Stokes flow solver to obtain an aerodynamic database, and a CNN model is built based on the observed data. Finally, the well-trained CNN model considering both flight status and shape variables is applied to aerodynamic shape optimization to demonstrate its capability to achieve fast optimization at multiple flight statuses.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305062736064ZK.pdf 9914KB PDF download
Fig. 2 851KB Image download
MediaObjects/12888_2022_4464_MOESM2_ESM.pdf 1104KB PDF download
Fig. 1 154KB Image download
Fig. 4 592KB Image download
Fig. 1 261KB Image download
Fig. 2 94KB Image download
40708_2022_178_Article_IEq64.gif 1KB Image download
Fig. 1 139KB Image download
Fig. 1 3883KB Image download
Fig. 1 59KB Image download
Fig. 5 326KB Image download
Fig. 1 1050KB Image download
Fig. 3 643KB Image download
Fig. 2 330KB Image download
Fig. 2 57KB Image download
Fig. 3 330KB Image download
Fig. 2 91KB Image download
MediaObjects/12888_2022_4468_MOESM1_ESM.tif 2493KB Other download
MediaObjects/12974_2022_2652_MOESM4_ESM.pdf 29720KB PDF download
Fig. 1 331KB Image download
Fig. 6 1394KB Image download
MediaObjects/40249_2022_1047_MOESM2_ESM.docx 14KB Other download
Fig. 1 111KB Image download
Fig. 8 1162KB Image download
Fig. 4 1002KB Image download
Fig. 1 743KB Image download
40249_2022_1045_Article_IEq1.gif 1KB Image download
40249_2022_1045_Article_IEq6.gif 1KB Image download
40249_2022_1045_Article_IEq8.gif 1KB Image download
40249_2022_1045_Article_IEq10.gif 1KB Image download
Fig. 1 1143KB Image download
40249_2022_1045_Article_IEq17.gif 1KB Image download
MediaObjects/12888_2022_4439_MOESM1_ESM.docx 669KB Other download
40249_2022_1045_Article_IEq23.gif 1KB Image download
40249_2022_1045_Article_IEq24.gif 1KB Image download
40249_2022_1045_Article_IEq25.gif 1KB Image download
Fig. 5 1362KB Image download
40249_2022_1045_Article_IEq27.gif 1KB Image download
MediaObjects/40249_2022_1045_MOESM1_ESM.docx 23KB Other download
MediaObjects/40249_2022_1045_MOESM2_ESM.docx 27KB Other download
Fig. 1 88KB Image download
Fig. 1 602KB Image download
Fig. 5 102KB Image download
MediaObjects/12937_2022_825_MOESM1_ESM.docx 159KB Other download
Fig. 2 603KB Image download
MediaObjects/41408_2022_759_MOESM3_ESM.pdf 1219KB PDF download
41408_2022_764_Article_IEq1.gif 1KB Image download
Fig. 1 106KB Image download
41408_2022_764_Article_IEq3.gif 1KB Image download
Fig. 2 106KB Image download
MediaObjects/12888_2022_4468_MOESM4_ESM.docx 39KB Other download
41408_2022_764_Article_IEq6.gif 1KB Image download
41408_2022_764_Article_IEq7.gif 1KB Image download
41408_2022_764_Article_IEq8.gif 1KB Image download
41408_2022_764_Article_IEq9.gif 1KB Image download
41408_2022_764_Article_IEq10.gif 1KB Image download
41408_2022_764_Article_IEq11.gif 1KB Image download
41408_2022_764_Article_IEq12.gif 1KB Image download
41408_2022_764_Article_IEq13.gif 1KB Image download
41408_2022_764_Article_IEq14.gif 1KB Image download
41408_2022_764_Article_IEq15.gif 1KB Image download
41408_2022_764_Article_IEq16.gif 1KB Image download
41408_2022_764_Article_IEq17.gif 1KB Image download
41408_2022_764_Article_IEq18.gif 1KB Image download
Fig. 1 93KB Image download
41408_2022_764_Article_IEq19.gif 1KB Image download
41408_2022_764_Article_IEq20.gif 1KB Image download
41408_2022_764_Article_IEq21.gif 1KB Image download
41408_2022_764_Article_IEq22.gif 1KB Image download
41408_2022_764_Article_IEq23.gif 1KB Image download
41408_2022_764_Article_IEq24.gif 1KB Image download
41408_2022_764_Article_IEq25.gif 1KB Image download
41408_2022_764_Article_IEq26.gif 1KB Image download
Fig. 1 171KB Image download
41408_2022_764_Article_IEq28.gif 1KB Image download
MediaObjects/12888_2022_4414_MOESM1_ESM.docx 50KB Other download
41408_2022_764_Article_IEq30.gif 1KB Image download
41408_2022_764_Article_IEq31.gif 1KB Image download
MediaObjects/41408_2022_764_MOESM1_ESM.docx 1560KB Other download
Fig. 6 234KB Image download
Fig. 3 2829KB Image download
Fig. 4 1438KB Image download
MediaObjects/12944_2022_1748_MOESM1_ESM.pptx 1468KB Other download
Fig. 1 134KB Image download
Fig. 3 251KB Image download
12864_2022_9026_Article_IEq55.gif 1KB Image download
Fig. 1 189KB Image download
Table 1 79KB Table download
12864_2022_9026_Article_IEq57.gif 1KB Image download
Fig. 1 1034KB Image download
12864_2022_9026_Article_IEq59.gif 1KB Image download
Fig. 6 963KB Image download
Fig. 1 66KB Image download
MediaObjects/12944_2022_1748_MOESM2_ESM.docx 69KB Other download
Fig.1 1033KB Image download
Fig. 1 2694KB Image download
Fig. 1 752KB Image download
MediaObjects/12902_2022_1256_MOESM1_ESM.tiff 35161KB Other download
Fig. 1 3432KB Image download
Fig. 2 751KB Image download
Fig. 1 752KB Image download
Fig. 4 2444KB Image download
【 图 表 】

Fig. 4

Fig. 1

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig.1

Fig. 1

Fig. 6

12864_2022_9026_Article_IEq59.gif

Fig. 1

12864_2022_9026_Article_IEq57.gif

Fig. 1

12864_2022_9026_Article_IEq55.gif

Fig. 3

Fig. 1

Fig. 4

Fig. 3

Fig. 6

41408_2022_764_Article_IEq31.gif

41408_2022_764_Article_IEq30.gif

41408_2022_764_Article_IEq28.gif

Fig. 1

41408_2022_764_Article_IEq26.gif

41408_2022_764_Article_IEq25.gif

41408_2022_764_Article_IEq24.gif

41408_2022_764_Article_IEq23.gif

41408_2022_764_Article_IEq22.gif

41408_2022_764_Article_IEq21.gif

41408_2022_764_Article_IEq20.gif

41408_2022_764_Article_IEq19.gif

Fig. 1

41408_2022_764_Article_IEq18.gif

41408_2022_764_Article_IEq17.gif

41408_2022_764_Article_IEq16.gif

41408_2022_764_Article_IEq15.gif

41408_2022_764_Article_IEq14.gif

41408_2022_764_Article_IEq13.gif

41408_2022_764_Article_IEq12.gif

41408_2022_764_Article_IEq11.gif

41408_2022_764_Article_IEq10.gif

41408_2022_764_Article_IEq9.gif

41408_2022_764_Article_IEq8.gif

41408_2022_764_Article_IEq7.gif

41408_2022_764_Article_IEq6.gif

Fig. 2

41408_2022_764_Article_IEq3.gif

Fig. 1

41408_2022_764_Article_IEq1.gif

Fig. 2

Fig. 5

Fig. 1

Fig. 1

40249_2022_1045_Article_IEq27.gif

Fig. 5

40249_2022_1045_Article_IEq25.gif

40249_2022_1045_Article_IEq24.gif

40249_2022_1045_Article_IEq23.gif

40249_2022_1045_Article_IEq17.gif

Fig. 1

40249_2022_1045_Article_IEq10.gif

40249_2022_1045_Article_IEq8.gif

40249_2022_1045_Article_IEq6.gif

40249_2022_1045_Article_IEq1.gif

Fig. 1

Fig. 4

Fig. 8

Fig. 1

Fig. 6

Fig. 1

Fig. 2

Fig. 3

Fig. 2

Fig. 2

Fig. 3

Fig. 1

Fig. 5

Fig. 1

Fig. 1

Fig. 1

40708_2022_178_Article_IEq64.gif

Fig. 2

Fig. 1

Fig. 4

Fig. 1

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  文献评价指标  
  下载次数:1次 浏览次数:0次