Advances in Aerodynamics | |
High-dimensional aerodynamic data modeling using a machine learning method based on a convolutional neural network | |
Research | |
Wen-Zheng Wang1  Zhong-Hua Han2  Chen-Zhou Xu2  Bo-Wen Zan2  Ming-Qi Liu2  | |
[1] Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, 611731, Chengdu, China;Institute of Aerodynamic and Multidisciplinary Design Optimization, National Key Laboratory of Science and Technology On Aerodynamic Design and Research, School of Aeronautics, Northwestern Polytechnical University, 710072, Xi’an, China; | |
关键词: Aerodynamic data modeling; High-dimensional problem; Machine learning; Convolutional neural network; Computational fluid dynamics; | |
DOI : 10.1186/s42774-022-00128-8 | |
received in 2022-07-12, accepted in 2022-10-13, 发布年份 2022 | |
来源: Springer | |
【 摘 要 】
Modeling high-dimensional aerodynamic data presents a significant challenge in aero-loads prediction, aerodynamic shape optimization, flight control, and simulation. This article develops a machine learning approach based on a convolutional neural network (CNN) to address this problem. A CNN can implicitly distill features underlying the data. The number of parameters to be trained can be significantly reduced because of its local connectivity and parameter-sharing properties, which is favorable for solving high-dimensional problems in which the training cost can be prohibitive. A hypersonic wing similar to the Sanger aerospace plane carrier wing is employed as the test case to demonstrate the CNN-based modeling method. First, the wing is parameterized by the free-form deformation method, and 109 variables incorporating flight status and aerodynamic shape variables are defined as model input. Second, more than 7000 sample points generated by the Latin hypercube sampling method are evaluated by performing computational fluid dynamics simulations using a Reynolds-averaged Navier–Stokes flow solver to obtain an aerodynamic database, and a CNN model is built based on the observed data. Finally, the well-trained CNN model considering both flight status and shape variables is applied to aerodynamic shape optimization to demonstrate its capability to achieve fast optimization at multiple flight statuses.
【 授权许可】
CC BY
© The Author(s) 2022
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305062736064ZK.pdf | 9914KB | download | |
Fig. 2 | 851KB | Image | download |
MediaObjects/12888_2022_4464_MOESM2_ESM.pdf | 1104KB | download | |
Fig. 1 | 154KB | Image | download |
Fig. 4 | 592KB | Image | download |
Fig. 1 | 261KB | Image | download |
Fig. 2 | 94KB | Image | download |
40708_2022_178_Article_IEq64.gif | 1KB | Image | download |
Fig. 1 | 139KB | Image | download |
Fig. 1 | 3883KB | Image | download |
Fig. 1 | 59KB | Image | download |
Fig. 5 | 326KB | Image | download |
Fig. 1 | 1050KB | Image | download |
Fig. 3 | 643KB | Image | download |
Fig. 2 | 330KB | Image | download |
Fig. 2 | 57KB | Image | download |
Fig. 3 | 330KB | Image | download |
Fig. 2 | 91KB | Image | download |
MediaObjects/12888_2022_4468_MOESM1_ESM.tif | 2493KB | Other | download |
MediaObjects/12974_2022_2652_MOESM4_ESM.pdf | 29720KB | download | |
Fig. 1 | 331KB | Image | download |
Fig. 6 | 1394KB | Image | download |
MediaObjects/40249_2022_1047_MOESM2_ESM.docx | 14KB | Other | download |
Fig. 1 | 111KB | Image | download |
Fig. 8 | 1162KB | Image | download |
Fig. 4 | 1002KB | Image | download |
Fig. 1 | 743KB | Image | download |
40249_2022_1045_Article_IEq1.gif | 1KB | Image | download |
40249_2022_1045_Article_IEq6.gif | 1KB | Image | download |
40249_2022_1045_Article_IEq8.gif | 1KB | Image | download |
40249_2022_1045_Article_IEq10.gif | 1KB | Image | download |
Fig. 1 | 1143KB | Image | download |
40249_2022_1045_Article_IEq17.gif | 1KB | Image | download |
MediaObjects/12888_2022_4439_MOESM1_ESM.docx | 669KB | Other | download |
40249_2022_1045_Article_IEq23.gif | 1KB | Image | download |
40249_2022_1045_Article_IEq24.gif | 1KB | Image | download |
40249_2022_1045_Article_IEq25.gif | 1KB | Image | download |
Fig. 5 | 1362KB | Image | download |
40249_2022_1045_Article_IEq27.gif | 1KB | Image | download |
MediaObjects/40249_2022_1045_MOESM1_ESM.docx | 23KB | Other | download |
MediaObjects/40249_2022_1045_MOESM2_ESM.docx | 27KB | Other | download |
Fig. 1 | 88KB | Image | download |
Fig. 1 | 602KB | Image | download |
Fig. 5 | 102KB | Image | download |
MediaObjects/12937_2022_825_MOESM1_ESM.docx | 159KB | Other | download |
Fig. 2 | 603KB | Image | download |
MediaObjects/41408_2022_759_MOESM3_ESM.pdf | 1219KB | download | |
41408_2022_764_Article_IEq1.gif | 1KB | Image | download |
Fig. 1 | 106KB | Image | download |
41408_2022_764_Article_IEq3.gif | 1KB | Image | download |
Fig. 2 | 106KB | Image | download |
MediaObjects/12888_2022_4468_MOESM4_ESM.docx | 39KB | Other | download |
41408_2022_764_Article_IEq6.gif | 1KB | Image | download |
41408_2022_764_Article_IEq7.gif | 1KB | Image | download |
41408_2022_764_Article_IEq8.gif | 1KB | Image | download |
41408_2022_764_Article_IEq9.gif | 1KB | Image | download |
41408_2022_764_Article_IEq10.gif | 1KB | Image | download |
41408_2022_764_Article_IEq11.gif | 1KB | Image | download |
41408_2022_764_Article_IEq12.gif | 1KB | Image | download |
41408_2022_764_Article_IEq13.gif | 1KB | Image | download |
41408_2022_764_Article_IEq14.gif | 1KB | Image | download |
41408_2022_764_Article_IEq15.gif | 1KB | Image | download |
41408_2022_764_Article_IEq16.gif | 1KB | Image | download |
41408_2022_764_Article_IEq17.gif | 1KB | Image | download |
41408_2022_764_Article_IEq18.gif | 1KB | Image | download |
Fig. 1 | 93KB | Image | download |
41408_2022_764_Article_IEq19.gif | 1KB | Image | download |
41408_2022_764_Article_IEq20.gif | 1KB | Image | download |
41408_2022_764_Article_IEq21.gif | 1KB | Image | download |
41408_2022_764_Article_IEq22.gif | 1KB | Image | download |
41408_2022_764_Article_IEq23.gif | 1KB | Image | download |
41408_2022_764_Article_IEq24.gif | 1KB | Image | download |
41408_2022_764_Article_IEq25.gif | 1KB | Image | download |
41408_2022_764_Article_IEq26.gif | 1KB | Image | download |
Fig. 1 | 171KB | Image | download |
41408_2022_764_Article_IEq28.gif | 1KB | Image | download |
MediaObjects/12888_2022_4414_MOESM1_ESM.docx | 50KB | Other | download |
41408_2022_764_Article_IEq30.gif | 1KB | Image | download |
41408_2022_764_Article_IEq31.gif | 1KB | Image | download |
MediaObjects/41408_2022_764_MOESM1_ESM.docx | 1560KB | Other | download |
Fig. 6 | 234KB | Image | download |
Fig. 3 | 2829KB | Image | download |
Fig. 4 | 1438KB | Image | download |
MediaObjects/12944_2022_1748_MOESM1_ESM.pptx | 1468KB | Other | download |
Fig. 1 | 134KB | Image | download |
Fig. 3 | 251KB | Image | download |
12864_2022_9026_Article_IEq55.gif | 1KB | Image | download |
Fig. 1 | 189KB | Image | download |
Table 1 | 79KB | Table | download |
12864_2022_9026_Article_IEq57.gif | 1KB | Image | download |
Fig. 1 | 1034KB | Image | download |
12864_2022_9026_Article_IEq59.gif | 1KB | Image | download |
Fig. 6 | 963KB | Image | download |
Fig. 1 | 66KB | Image | download |
MediaObjects/12944_2022_1748_MOESM2_ESM.docx | 69KB | Other | download |
Fig.1 | 1033KB | Image | download |
Fig. 1 | 2694KB | Image | download |
Fig. 1 | 752KB | Image | download |
MediaObjects/12902_2022_1256_MOESM1_ESM.tiff | 35161KB | Other | download |
Fig. 1 | 3432KB | Image | download |
Fig. 2 | 751KB | Image | download |
Fig. 1 | 752KB | Image | download |
Fig. 4 | 2444KB | Image | download |
【 图 表 】
Fig. 4
Fig. 1
Fig. 2
Fig. 1
Fig. 1
Fig. 1
Fig.1
Fig. 1
Fig. 6
12864_2022_9026_Article_IEq59.gif
Fig. 1
12864_2022_9026_Article_IEq57.gif
Fig. 1
12864_2022_9026_Article_IEq55.gif
Fig. 3
Fig. 1
Fig. 4
Fig. 3
Fig. 6
41408_2022_764_Article_IEq31.gif
41408_2022_764_Article_IEq30.gif
41408_2022_764_Article_IEq28.gif
Fig. 1
41408_2022_764_Article_IEq26.gif
41408_2022_764_Article_IEq25.gif
41408_2022_764_Article_IEq24.gif
41408_2022_764_Article_IEq23.gif
41408_2022_764_Article_IEq22.gif
41408_2022_764_Article_IEq21.gif
41408_2022_764_Article_IEq20.gif
41408_2022_764_Article_IEq19.gif
Fig. 1
41408_2022_764_Article_IEq18.gif
41408_2022_764_Article_IEq17.gif
41408_2022_764_Article_IEq16.gif
41408_2022_764_Article_IEq15.gif
41408_2022_764_Article_IEq14.gif
41408_2022_764_Article_IEq13.gif
41408_2022_764_Article_IEq12.gif
41408_2022_764_Article_IEq11.gif
41408_2022_764_Article_IEq10.gif
41408_2022_764_Article_IEq9.gif
41408_2022_764_Article_IEq8.gif
41408_2022_764_Article_IEq7.gif
41408_2022_764_Article_IEq6.gif
Fig. 2
41408_2022_764_Article_IEq3.gif
Fig. 1
41408_2022_764_Article_IEq1.gif
Fig. 2
Fig. 5
Fig. 1
Fig. 1
40249_2022_1045_Article_IEq27.gif
Fig. 5
40249_2022_1045_Article_IEq25.gif
40249_2022_1045_Article_IEq24.gif
40249_2022_1045_Article_IEq23.gif
40249_2022_1045_Article_IEq17.gif
Fig. 1
40249_2022_1045_Article_IEq10.gif
40249_2022_1045_Article_IEq8.gif
40249_2022_1045_Article_IEq6.gif
40249_2022_1045_Article_IEq1.gif
Fig. 1
Fig. 4
Fig. 8
Fig. 1
Fig. 6
Fig. 1
Fig. 2
Fig. 3
Fig. 2
Fig. 2
Fig. 3
Fig. 1
Fig. 5
Fig. 1
Fig. 1
Fig. 1
40708_2022_178_Article_IEq64.gif
Fig. 2
Fig. 1
Fig. 4
Fig. 1
Fig. 2
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]