期刊论文详细信息
Microbial Cell Factories
Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity
Research
Teun Kuil1  Johannes Yayo1  Antonius J. A. van Maris1  Johanna Pechan1  Jan Küchler2 
[1] Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden;Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden;Max Plank Institute for Dynamics of Complex Technical Systems, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany;
关键词: Clostridium thermocellum;    Acetivibrio thermocellus;    Chaotropicity;    Ethanol tolerance;    Temperature;    Growth-arrest;    adhE;   
DOI  :  10.1186/s12934-022-01999-8
 received in 2022-09-08, accepted in 2022-12-17,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundClostridium thermocellum is a promising candidate for consolidated bioprocessing of lignocellulosic biomass to ethanol. The low ethanol tolerance of this microorganism is one of the remaining obstacles to industrial implementation. Ethanol inhibition can be caused by end-product inhibition and/or chaotropic-induced stress resulting in increased membrane fluidization and disruption of macromolecules. The highly reversible glycolysis of C. thermocellum might be especially sensitive to end-product inhibition. The chaotropic effect of ethanol is known to increase with temperature. This study explores the relative contributions of these two aspects to investigate and possibly mitigate ethanol-induced stress in growing and non-growing C. thermocellum cultures.ResultsTo separate chaotropic from thermodynamic effects of ethanol toxicity, a non-ethanol producing strain AVM062 (Pclo1313_2638::ldh* ∆adhE) was constructed by deleting the bifunctional acetaldehyde/alcohol dehydrogenase gene, adhE, in a lactate-overproducing strain. Exogenously added ethanol lowered the growth rate of both wild-type and the non-ethanol producing mutant. The mutant strain grew quicker than the wild-type at 50 and 55 °C for ethanol concentrations ≥ 10 g L−1 and was able to reach higher maximum OD600 at all ethanol concentrations and temperatures. For the wild-type, the maximum OD600 and relative growth rates were higher at 45 and 50 °C, compared to 55 °C, for ethanol concentrations ≥ 15 g L−1. For the mutant strain, no positive effect on growth was observed at lower temperatures. Growth-arrested cells of the wild-type demonstrated improved fermentative capacity over time in the presence of ethanol concentrations up to 40 g L−1 at 45 and 50 °C compared to 55 °C.ConclusionPositive effects of temperature on ethanol tolerance were limited to wild-type C. thermocellum and are likely related to mechanisms involved in the ethanol-formation pathway and redox cofactor balancing. Lowering the cultivation temperature provides an attractive strategy to improve growth and fermentative capacity at high ethanol titres in high-cellulose loading batch cultivations. Finally, non-ethanol producing strains are useful platform strains to study the effects of chaotropicity and thermodynamics related to ethanol toxicity and allow for deeper understanding of growth and/or fermentation cessation under industrially relevant conditions.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305061154542ZK.pdf 3643KB PDF download
12888_2022_4365_Article_IEq22.gif 1KB Image download
Fig. 2 1219KB Image download
12982_2022_119_Article_IEq164.gif 1KB Image download
12982_2022_119_Article_IEq173.gif 1KB Image download
Fig. 4 42KB Image download
Fig.3 855KB Image download
12902_2022_1244_Article_IEq19.gif 1KB Image download
MediaObjects/12888_2022_4484_MOESM1_ESM.docx 27KB Other download
12902_2022_1244_Article_IEq21.gif 1KB Image download
12902_2022_1244_Article_IEq22.gif 1KB Image download
12902_2022_1244_Article_IEq23.gif 1KB Image download
12902_2022_1244_Article_IEq24.gif 1KB Image download
Fig. 4 1952KB Image download
MediaObjects/12974_2022_2668_MOESM5_ESM.tif 680KB Other download
12902_2022_1244_Article_IEq27.gif 1KB Image download
12902_2022_1244_Article_IEq28.gif 1KB Image download
Fig. 5 499KB Image download
12902_2022_1244_Article_IEq30.gif 1KB Image download
Fig. 1 187KB Image download
13690_2022_1011_Article_IEq4.gif 1KB Image download
MediaObjects/13690_2022_1011_MOESM1_ESM.xlsx 313KB Other download
Fig. 1 75KB Image download
12936_2022_4386_Article_IEq132.gif 1KB Image download
MediaObjects/12888_2022_4455_MOESM1_ESM.pdf 112KB PDF download
Fig. 1 324KB Image download
40644_2022_517_Article_IEq1.gif 1KB Image download
Fig. 6 112KB Image download
【 图 表 】

Fig. 6

40644_2022_517_Article_IEq1.gif

Fig. 1

12936_2022_4386_Article_IEq132.gif

Fig. 1

13690_2022_1011_Article_IEq4.gif

Fig. 1

12902_2022_1244_Article_IEq30.gif

Fig. 5

12902_2022_1244_Article_IEq28.gif

12902_2022_1244_Article_IEq27.gif

Fig. 4

12902_2022_1244_Article_IEq24.gif

12902_2022_1244_Article_IEq23.gif

12902_2022_1244_Article_IEq22.gif

12902_2022_1244_Article_IEq21.gif

12902_2022_1244_Article_IEq19.gif

Fig.3

Fig. 4

12982_2022_119_Article_IEq173.gif

12982_2022_119_Article_IEq164.gif

Fig. 2

12888_2022_4365_Article_IEq22.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  文献评价指标  
  下载次数:2次 浏览次数:0次