期刊论文详细信息
Journal of Cheminformatics
Predicting chemical structure using reinforcement learning with a stack-augmented conditional variational autoencoder
Research
Hwanhee Kim1  Jaegyoon Ahn1  Soohyun Ko2  Byung Ju Kim3  Sung Jin Ryu3 
[1] Department of Computer Science and Engineering, Incheon National University, 22012, Incheon, Republic of Korea;GenesisEgo, 04382, Seoul, Republic of Korea;UBLBio Corporation, 16679, Suwon, Republic of Korea;
关键词: De novo drug design;    Reinforcement learning;    Conditional Variational AutoEencoder;    Sorafenib;    Raf kinases;   
DOI  :  10.1186/s13321-022-00666-9
 received in 2022-02-11, accepted in 2022-12-03,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

In this paper, a reinforcement learning model is proposed that can maximize the predicted binding affinity between a generated molecule and target proteins. The model used to generate molecules in the proposed model was the Stacked Conditional Variation AutoEncoder (Stack-CVAE), which acts as an agent in reinforcement learning so that the resulting chemical formulas have the desired chemical properties and show high binding affinity with specific target proteins. We generated 1000 chemical formulas using the chemical properties of sorafenib and the three target kinases of sorafenib. Then, we confirmed that Stack-CVAE generates more of the valid and unique chemical compounds that have the desired chemical properties and predicted binding affinity better than other generative models. More detailed analysis for 100 of the top scoring molecules show that they are novel ones not found in existing chemical databases. Moreover, they reveal significantly higher predicted binding affinity score for Raf kinases than for other kinases. Furthermore, they are highly druggable and synthesizable.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305060932997ZK.pdf 1893KB PDF download
Fig. 6 172KB Image download
Fig. 2 910KB Image download
Fig. 2 630KB Image download
Fig. 1 83KB Image download
Fig. 1 252KB Image download
12864_2022_9026_Article_IEq225.gif 1KB Image download
Fig. 6 1402KB Image download
Fig. 4 2985KB Image download
42004_2022_782_Tabh_HTML.png 12KB Image download
Fig. 6 395KB Image download
Fig. 1 149KB Image download
12864_2022_9026_Article_IEq246.gif 1KB Image download
Fig. 2 612KB Image download
Fig. 1 866KB Image download
12864_2022_9026_Article_IEq248.gif 1KB Image download
MediaObjects/12888_2022_4406_MOESM1_ESM.xlsx 64KB Other download
Fig. 8 148KB Image download
MediaObjects/13690_2022_1000_MOESM1_ESM.docx 36KB Other download
Fig. 9 614KB Image download
Fig. 5 2783KB Image download
Fig. 1 96KB Image download
Fig. 1 138KB Image download
Fig. 1 236KB Image download
Fig. 3 854KB Image download
Fig. 2 1330KB Image download
MediaObjects/12888_2022_4391_MOESM1_ESM.docx 24KB Other download
Fig. 3 535KB Image download
Fig. 3 133KB Image download
Fig. 1 44KB Image download
Fig. 2 64KB Image download
MediaObjects/41016_2022_311_MOESM1_ESM.jpg 69KB Other download
Fig. 2 445KB Image download
MediaObjects/41016_2022_311_MOESM2_ESM.jpg 767KB Other download
Fig. 1 350KB Image download
MediaObjects/13690_2022_1005_MOESM1_ESM.docx 21KB Other download
MediaObjects/13690_2022_1005_MOESM2_ESM.xlsx 6056KB Other download
Fig. 5 681KB Image download
MediaObjects/41016_2022_311_MOESM3_ESM.docx 14KB Other download
Fig. 2 136KB Image download
【 图 表 】

Fig. 2

Fig. 5

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 3

Fig. 3

Fig. 2

Fig. 3

Fig. 1

Fig. 1

Fig. 1

Fig. 5

Fig. 9

Fig. 8

12864_2022_9026_Article_IEq248.gif

Fig. 1

Fig. 2

12864_2022_9026_Article_IEq246.gif

Fig. 1

Fig. 6

42004_2022_782_Tabh_HTML.png

Fig. 4

Fig. 6

12864_2022_9026_Article_IEq225.gif

Fig. 1

Fig. 1

Fig. 2

Fig. 2

Fig. 6

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  文献评价指标  
  下载次数:7次 浏览次数:0次