期刊论文详细信息
Journal of High Energy Physics 卷:2022
Topological string amplitudes and Seiberg-Witten prepotentials from the counting of dimers in transverse flux
Regular Article - Theoretical Physics
M. Semenyakin1 
[1] Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300, Leiden, RA, The Netherlands;
关键词: Supersymmetric Gauge Theory;    Topological Strings;    Lattice Integrable Models;    Integrable Hierarchies;   
DOI  :  10.1007/JHEP10(2022)198
 received in 2022-09-03, accepted in 2022-10-18,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

Important illustration to the principle “partition functions in string theory are τ-functions of integrable equations” is the fact that the (dual) partition functions of 4dN\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \mathcal{N} $$\end{document} = 2 gauge theories solve Painlevé equations. In this paper we show a road to self-consistent proof of the recently suggested generalization of this correspondence: partition functions of topological string on local Calabi-Yau manifolds solve q-difference equations of non-autonomous dynamics of the “cluster-algebraic”integrable systems.We explain in details the “solutions” side of the proposal. In the simplest non-trivial example we show how 3d box-counting of topological string partition function appears from the counting of dimers on bipartite graph with the discrete gauge field of “flux” q. This is a new form of topological string/spectral theory type correspondence, since the partition function of dimers can be computed as determinant of the linear q-difference Kasteleyn operator. Using WKB method in the “melting” q → 1 limit we get a closed integral formula for Seiberg-Witten prepotential of the corresponding 5d gauge theory. The “equations” side of the correspondence remains the intriguing topic for the further studies.

【 授权许可】

Unknown   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202304227810372ZK.pdf 1171KB PDF download
MediaObjects/12862_2022_2087_MOESM1_ESM.docx 299KB Other download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  文献评价指标  
  下载次数:10次 浏览次数:4次