期刊论文详细信息
BMC Medical Research Methodology 卷:22
Two-stage matching-adjusted indirect comparison
Research
Antonio Remiro-Azócar1 
[1] Medical Affairs Statistics, Bayer plc, 400 South Oak Way, Reading, UK;Department of Statistical Science, University College London, 1-19 Torrington Place, London, UK;
关键词: Health technology assessment;    Indirect treatment comparison;    Matching-adjusted indirect comparison;    Covariate adjustment;    Covariate balance;    Inverse probability of treatment weighting;    Evidence synthesis;   
DOI  :  10.1186/s12874-022-01692-9
 received in 2022-04-14, accepted in 2022-07-19,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundAnchored covariate-adjusted indirect comparisons inform reimbursement decisions where there are no head-to-head trials between the treatments of interest, there is a common comparator arm shared by the studies, and there are patient-level data limitations. Matching-adjusted indirect comparison (MAIC), based on propensity score weighting, is the most widely used covariate-adjusted indirect comparison method in health technology assessment. MAIC has poor precision and is inefficient when the effective sample size after weighting is small.MethodsA modular extension to MAIC, termed two-stage matching-adjusted indirect comparison (2SMAIC), is proposed. This uses two parametric models. One estimates the treatment assignment mechanism in the study with individual patient data (IPD), the other estimates the trial assignment mechanism. The first model produces inverse probability weights that are combined with the odds weights produced by the second model. The resulting weights seek to balance covariates between treatment arms and across studies. A simulation study provides proof-of-principle in an indirect comparison performed across two randomized trials. Nevertheless, 2SMAIC can be applied in situations where the IPD trial is observational, by including potential confounders in the treatment assignment model. The simulation study also explores the use of weight truncation in combination with MAIC for the first time.ResultsDespite enforcing randomization and knowing the true treatment assignment mechanism in the IPD trial, 2SMAIC yields improved precision and efficiency with respect to MAIC in all scenarios, while maintaining similarly low levels of bias. The two-stage approach is effective when sample sizes in the IPD trial are low, as it controls for chance imbalances in prognostic baseline covariates between study arms. It is not as effective when overlap between the trials’ target populations is poor and the extremity of the weights is high. In these scenarios, truncation leads to substantial precision and efficiency gains but induces considerable bias. The combination of a two-stage approach with truncation produces the highest precision and efficiency improvements.ConclusionsTwo-stage approaches to MAIC can increase precision and efficiency with respect to the standard approach by adjusting for empirical imbalances in prognostic covariates in the IPD trial. Further modules could be incorporated for additional variance reduction or to account for missingness and non-compliance in the IPD trial.

【 授权许可】

CC BY   
© The Author(s) 2022. corrected publication 2022

【 预 览 】
附件列表
Files Size Format View
RO202304226574946ZK.pdf 1936KB PDF download
40507_2023_167_Article_IEq117.gif 1KB Image download
Fig. 8 886KB Image download
MediaObjects/13045_2019_708_MOESM8_ESM.pdf 1982KB PDF download
40507_2023_167_Article_IEq126.gif 1KB Image download
40507_2023_167_Article_IEq127.gif 1KB Image download
Fig. 7 409KB Image download
Fig. 8 474KB Image download
40507_2023_167_Article_IEq134.gif 1KB Image download
40507_2023_167_Article_IEq135.gif 1KB Image download
MediaObjects/12931_2022_2195_MOESM5_ESM.tif 1657KB Other download
Fig. 7 171KB Image download
Fig. 1 2756KB Image download
Fig. 9 360KB Image download
40507_2023_167_Article_IEq140.gif 1KB Image download
40507_2023_167_Article_IEq141.gif 1KB Image download
40507_2023_167_Article_IEq142.gif 1KB Image download
MediaObjects/41408_2023_832_MOESM1_ESM.docx 21KB Other download
Fig. 1 407KB Image download
40507_2023_167_Article_IEq145.gif 1KB Image download
40507_2023_167_Article_IEq146.gif 1KB Image download
Fig. 3 1999KB Image download
Fig. 2 299KB Image download
40507_2023_167_Article_IEq149.gif 1KB Image download
Fig. 1 108KB Image download
Fig. 2 448KB Image download
Fig. 10 1205KB Image download
Fig. 4 2358KB Image download
MediaObjects/12931_2022_2195_MOESM6_ESM.docx 13KB Other download
40507_2023_167_Article_IEq155.gif 1KB Image download
MediaObjects/12931_2022_2195_MOESM7_ESM.docx 15KB Other download
40507_2023_167_Article_IEq157.gif 1KB Image download
Fig. 3 343KB Image download
40507_2023_167_Article_IEq159.gif 1KB Image download
MediaObjects/13046_2019_1188_MOESM1_ESM.tif 183KB Other download
Fig. 2 1498KB Image download
40507_2023_167_Article_IEq163.gif 1KB Image download
Fig. 5 374KB Image download
Fig. 11 1173KB Image download
【 图 表 】

Fig. 11

Fig. 5

40507_2023_167_Article_IEq163.gif

Fig. 2

40507_2023_167_Article_IEq159.gif

Fig. 3

40507_2023_167_Article_IEq157.gif

40507_2023_167_Article_IEq155.gif

Fig. 4

Fig. 10

Fig. 2

Fig. 1

40507_2023_167_Article_IEq149.gif

Fig. 2

Fig. 3

40507_2023_167_Article_IEq146.gif

40507_2023_167_Article_IEq145.gif

Fig. 1

40507_2023_167_Article_IEq142.gif

40507_2023_167_Article_IEq141.gif

40507_2023_167_Article_IEq140.gif

Fig. 9

Fig. 1

Fig. 7

40507_2023_167_Article_IEq135.gif

40507_2023_167_Article_IEq134.gif

Fig. 8

Fig. 7

40507_2023_167_Article_IEq127.gif

40507_2023_167_Article_IEq126.gif

Fig. 8

40507_2023_167_Article_IEq117.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  文献评价指标  
  下载次数:2次 浏览次数:0次