BMC Medical Research Methodology | 卷:22 |
Zero-augmented beta-prime model for multilevel semi-continuous data: a Bayesian inference | |
Research | |
Naser Kamyari1  Maryam Seyedtabib2  Abbas Moghimbeigi3  Ali Reza Soltanian4  Hossein Mahjub5  | |
[1] Department of Biostatistics and Epidemiology, School of Health, Abadan University of Medical Sciences, Abadan, Iran; | |
[2] Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; | |
[3] Department of Biostatistics and Epidemiology, School of Health, Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; | |
[4] Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Street of Mahdieh, Hamadan, Iran; | |
[5] Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran; | |
关键词: Bayesian framework; Non-negative data; Two-part mixed-effects model; Skew distributions; Pharmaceutical expenditure; | |
DOI : 10.1186/s12874-022-01736-0 | |
received in 2022-06-01, accepted in 2022-09-27, 发布年份 2022 | |
来源: Springer | |
【 摘 要 】
Semi-continuous data characterized by an excessive proportion of zeros and right-skewed continuous positive values appear frequently in medical research. One example would be the pharmaceutical expenditure (PE) data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyse clustered measures of semi-continuous data from multilevel studies. In this study, we propose a new flexible two-part mixed-effects model with skew distributions for nested semi-continuous cost data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: Part I) a model on the occurrence of positive values using a generalized logistic mixed model; and Part II) a model on the magnitude of positive values using a linear mixed model where the model errors follow skew distributions including beta-prime (BP). The proposed method is illustrated with pharmaceutical expenditure data from a multilevel observational study and the analytic results are reported by comparing potential models under different skew distributions. Simulation studies are conducted to assess the performance of the proposed model. The DIC3, LPML, WAIC, and LOO as the Bayesian model selection criteria and measures of divergence used to compare the models.
【 授权许可】
CC BY
© The Author(s) 2022
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202304220753598ZK.pdf | 2518KB | download | |
Fig. 2 | 567KB | Image | download |
13638_2023_2232_Article_IEq10.gif | 1KB | Image | download |
40507_2023_167_Article_IEq438.gif | 1KB | Image | download |
Fig. 3 | 535KB | Image | download |
40507_2023_167_Article_IEq449.gif | 1KB | Image | download |
40507_2023_167_Article_IEq452.gif | 1KB | Image | download |
Fig. 4 | 192KB | Image | download |
MediaObjects/42004_2022_764_MOESM2_ESM.pdf | 1627KB | download | |
13638_2023_2232_Article_IEq44.gif | 1KB | Image | download |
Fig. 2 | 1772KB | Image | download |
40507_2023_167_Article_IEq456.gif | 1KB | Image | download |
40507_2023_167_Article_IEq457.gif | 1KB | Image | download |
40507_2023_167_Article_IEq458.gif | 1KB | Image | download |
40507_2023_167_Article_IEq459.gif | 1KB | Image | download |
40507_2023_167_Article_IEq461.gif | 1KB | Image | download |
40507_2023_167_Article_IEq462.gif | 1KB | Image | download |
Fig. 1 | 367KB | Image | download |
40507_2023_167_Article_IEq464.gif | 1KB | Image | download |
40507_2023_167_Article_IEq465.gif | 1KB | Image | download |
40507_2023_167_Article_IEq466.gif | 1KB | Image | download |
Fig. 5 | 1754KB | Image | download |
Fig. 2 | 1447KB | Image | download |
40507_2023_167_Article_IEq469.gif | 1KB | Image | download |
MediaObjects/42004_2022_764_MOESM3_ESM.pdf | 379KB | download | |
40507_2023_167_Article_IEq471.gif | 1KB | Image | download |
Fig. 1 | 1087KB | Image | download |
Fig. 1 | 42KB | Image | download |
40507_2023_167_Article_IEq474.gif | 1KB | Image | download |
MediaObjects/42004_2022_764_MOESM4_ESM.pdf | 4462KB | download | |
40507_2023_167_Article_IEq476.gif | 1KB | Image | download |
40507_2023_167_Article_IEq478.gif | 1KB | Image | download |
40507_2023_167_Article_IEq479.gif | 1KB | Image | download |
40507_2023_167_Article_IEq480.gif | 1KB | Image | download |
Fig. 1 | 545KB | Image | download |
40507_2023_167_Article_IEq482.gif | 1KB | Image | download |
40507_2023_167_Article_IEq483.gif | 1KB | Image | download |
Fig. 3 | 549KB | Image | download |
40507_2023_167_Article_IEq493.gif | 1KB | Image | download |
40507_2023_167_Article_IEq494.gif | 1KB | Image | download |
Fig. 4 | 1469KB | Image | download |
Fig. 2 | 4070KB | Image | download |
40507_2023_167_Article_IEq497.gif | 1KB | Image | download |
40507_2023_167_Article_IEq498.gif | 1KB | Image | download |
40507_2023_167_Article_IEq499.gif | 1KB | Image | download |
Fig. 3 | 282KB | Image | download |
Fig. 7 | 2732KB | Image | download |
Fig. 5 | 493KB | Image | download |
40507_2023_167_Article_IEq503.gif | 1KB | Image | download |
Fig. 4 | 760KB | Image | download |
40507_2023_167_Article_IEq505.gif | 1KB | Image | download |
40507_2023_167_Article_IEq506.gif | 1KB | Image | download |
40507_2023_167_Article_IEq507.gif | 1KB | Image | download |
MediaObjects/12864_2021_7661_MOESM1_ESM.xlsx | 1401KB | Other | download |
MediaObjects/12903_2023_2930_MOESM1_ESM.docx | 1329KB | Other | download |
40507_2023_167_Article_IEq515.gif | 1KB | Image | download |
MediaObjects/41420_2022_1247_MOESM4_ESM.avi | 4536KB | Other | download |
Fig. 3 | 417KB | Image | download |
Fig. 3 | 2480KB | Image | download |
Fig. 6 | 1365KB | Image | download |
40623_2023_1812_Article_IEq118.gif | 1KB | Image | download |
13638_2023_2232_Article_IEq68.gif | 1KB | Image | download |
Fig. 4 | 54KB | Image | download |
Fig. 3 | 4028KB | Image | download |
MediaObjects/41235_2023_475_MOESM1_ESM.docx | 2139KB | Other | download |
13638_2023_2232_Article_IEq71.gif | 1KB | Image | download |
【 图 表 】
13638_2023_2232_Article_IEq71.gif
Fig. 3
Fig. 4
13638_2023_2232_Article_IEq68.gif
40623_2023_1812_Article_IEq118.gif
Fig. 6
Fig. 3
Fig. 3
40507_2023_167_Article_IEq515.gif
40507_2023_167_Article_IEq507.gif
40507_2023_167_Article_IEq506.gif
40507_2023_167_Article_IEq505.gif
Fig. 4
40507_2023_167_Article_IEq503.gif
Fig. 5
Fig. 7
Fig. 3
40507_2023_167_Article_IEq499.gif
40507_2023_167_Article_IEq498.gif
40507_2023_167_Article_IEq497.gif
Fig. 2
Fig. 4
40507_2023_167_Article_IEq494.gif
40507_2023_167_Article_IEq493.gif
Fig. 3
40507_2023_167_Article_IEq483.gif
40507_2023_167_Article_IEq482.gif
Fig. 1
40507_2023_167_Article_IEq480.gif
40507_2023_167_Article_IEq479.gif
40507_2023_167_Article_IEq478.gif
40507_2023_167_Article_IEq476.gif
40507_2023_167_Article_IEq474.gif
Fig. 1
Fig. 1
40507_2023_167_Article_IEq471.gif
40507_2023_167_Article_IEq469.gif
Fig. 2
Fig. 5
40507_2023_167_Article_IEq466.gif
40507_2023_167_Article_IEq465.gif
40507_2023_167_Article_IEq464.gif
Fig. 1
40507_2023_167_Article_IEq462.gif
40507_2023_167_Article_IEq461.gif
40507_2023_167_Article_IEq459.gif
40507_2023_167_Article_IEq458.gif
40507_2023_167_Article_IEq457.gif
40507_2023_167_Article_IEq456.gif
Fig. 2
13638_2023_2232_Article_IEq44.gif
Fig. 4
40507_2023_167_Article_IEq452.gif
40507_2023_167_Article_IEq449.gif
Fig. 3
40507_2023_167_Article_IEq438.gif
13638_2023_2232_Article_IEq10.gif
Fig. 2
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]