期刊论文详细信息
BMC Medical Research Methodology 卷:22
Zero-augmented beta-prime model for multilevel semi-continuous data: a Bayesian inference
Research
Naser Kamyari1  Maryam Seyedtabib2  Abbas Moghimbeigi3  Ali Reza Soltanian4  Hossein Mahjub5 
[1] Department of Biostatistics and Epidemiology, School of Health, Abadan University of Medical Sciences, Abadan, Iran;
[2] Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
[3] Department of Biostatistics and Epidemiology, School of Health, Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran;
[4] Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Street of Mahdieh, Hamadan, Iran;
[5] Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran;
关键词: Bayesian framework;    Non-negative data;    Two-part mixed-effects model;    Skew distributions;    Pharmaceutical expenditure;   
DOI  :  10.1186/s12874-022-01736-0
 received in 2022-06-01, accepted in 2022-09-27,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

Semi-continuous data characterized by an excessive proportion of zeros and right-skewed continuous positive values appear frequently in medical research. One example would be the pharmaceutical expenditure (PE) data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyse clustered measures of semi-continuous data from multilevel studies. In this study, we propose a new flexible two-part mixed-effects model with skew distributions for nested semi-continuous cost data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: Part I) a model on the occurrence of positive values using a generalized logistic mixed model; and Part II) a model on the magnitude of positive values using a linear mixed model where the model errors follow skew distributions including beta-prime (BP). The proposed method is illustrated with pharmaceutical expenditure data from a multilevel observational study and the analytic results are reported by comparing potential models under different skew distributions. Simulation studies are conducted to assess the performance of the proposed model. The DIC3, LPML, WAIC, and LOO as the Bayesian model selection criteria and measures of divergence used to compare the models.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202304220753598ZK.pdf 2518KB PDF download
Fig. 2 567KB Image download
13638_2023_2232_Article_IEq10.gif 1KB Image download
40507_2023_167_Article_IEq438.gif 1KB Image download
Fig. 3 535KB Image download
40507_2023_167_Article_IEq449.gif 1KB Image download
40507_2023_167_Article_IEq452.gif 1KB Image download
Fig. 4 192KB Image download
MediaObjects/42004_2022_764_MOESM2_ESM.pdf 1627KB PDF download
13638_2023_2232_Article_IEq44.gif 1KB Image download
Fig. 2 1772KB Image download
40507_2023_167_Article_IEq456.gif 1KB Image download
40507_2023_167_Article_IEq457.gif 1KB Image download
40507_2023_167_Article_IEq458.gif 1KB Image download
40507_2023_167_Article_IEq459.gif 1KB Image download
40507_2023_167_Article_IEq461.gif 1KB Image download
40507_2023_167_Article_IEq462.gif 1KB Image download
Fig. 1 367KB Image download
40507_2023_167_Article_IEq464.gif 1KB Image download
40507_2023_167_Article_IEq465.gif 1KB Image download
40507_2023_167_Article_IEq466.gif 1KB Image download
Fig. 5 1754KB Image download
Fig. 2 1447KB Image download
40507_2023_167_Article_IEq469.gif 1KB Image download
MediaObjects/42004_2022_764_MOESM3_ESM.pdf 379KB PDF download
40507_2023_167_Article_IEq471.gif 1KB Image download
Fig. 1 1087KB Image download
Fig. 1 42KB Image download
40507_2023_167_Article_IEq474.gif 1KB Image download
MediaObjects/42004_2022_764_MOESM4_ESM.pdf 4462KB PDF download
40507_2023_167_Article_IEq476.gif 1KB Image download
40507_2023_167_Article_IEq478.gif 1KB Image download
40507_2023_167_Article_IEq479.gif 1KB Image download
40507_2023_167_Article_IEq480.gif 1KB Image download
Fig. 1 545KB Image download
40507_2023_167_Article_IEq482.gif 1KB Image download
40507_2023_167_Article_IEq483.gif 1KB Image download
Fig. 3 549KB Image download
40507_2023_167_Article_IEq493.gif 1KB Image download
40507_2023_167_Article_IEq494.gif 1KB Image download
Fig. 4 1469KB Image download
Fig. 2 4070KB Image download
40507_2023_167_Article_IEq497.gif 1KB Image download
40507_2023_167_Article_IEq498.gif 1KB Image download
40507_2023_167_Article_IEq499.gif 1KB Image download
Fig. 3 282KB Image download
Fig. 7 2732KB Image download
Fig. 5 493KB Image download
40507_2023_167_Article_IEq503.gif 1KB Image download
Fig. 4 760KB Image download
40507_2023_167_Article_IEq505.gif 1KB Image download
40507_2023_167_Article_IEq506.gif 1KB Image download
40507_2023_167_Article_IEq507.gif 1KB Image download
MediaObjects/12864_2021_7661_MOESM1_ESM.xlsx 1401KB Other download
MediaObjects/12903_2023_2930_MOESM1_ESM.docx 1329KB Other download
40507_2023_167_Article_IEq515.gif 1KB Image download
MediaObjects/41420_2022_1247_MOESM4_ESM.avi 4536KB Other download
Fig. 3 417KB Image download
Fig. 3 2480KB Image download
Fig. 6 1365KB Image download
40623_2023_1812_Article_IEq118.gif 1KB Image download
13638_2023_2232_Article_IEq68.gif 1KB Image download
Fig. 4 54KB Image download
Fig. 3 4028KB Image download
MediaObjects/41235_2023_475_MOESM1_ESM.docx 2139KB Other download
13638_2023_2232_Article_IEq71.gif 1KB Image download
【 图 表 】

13638_2023_2232_Article_IEq71.gif

Fig. 3

Fig. 4

13638_2023_2232_Article_IEq68.gif

40623_2023_1812_Article_IEq118.gif

Fig. 6

Fig. 3

Fig. 3

40507_2023_167_Article_IEq515.gif

40507_2023_167_Article_IEq507.gif

40507_2023_167_Article_IEq506.gif

40507_2023_167_Article_IEq505.gif

Fig. 4

40507_2023_167_Article_IEq503.gif

Fig. 5

Fig. 7

Fig. 3

40507_2023_167_Article_IEq499.gif

40507_2023_167_Article_IEq498.gif

40507_2023_167_Article_IEq497.gif

Fig. 2

Fig. 4

40507_2023_167_Article_IEq494.gif

40507_2023_167_Article_IEq493.gif

Fig. 3

40507_2023_167_Article_IEq483.gif

40507_2023_167_Article_IEq482.gif

Fig. 1

40507_2023_167_Article_IEq480.gif

40507_2023_167_Article_IEq479.gif

40507_2023_167_Article_IEq478.gif

40507_2023_167_Article_IEq476.gif

40507_2023_167_Article_IEq474.gif

Fig. 1

Fig. 1

40507_2023_167_Article_IEq471.gif

40507_2023_167_Article_IEq469.gif

Fig. 2

Fig. 5

40507_2023_167_Article_IEq466.gif

40507_2023_167_Article_IEq465.gif

40507_2023_167_Article_IEq464.gif

Fig. 1

40507_2023_167_Article_IEq462.gif

40507_2023_167_Article_IEq461.gif

40507_2023_167_Article_IEq459.gif

40507_2023_167_Article_IEq458.gif

40507_2023_167_Article_IEq457.gif

40507_2023_167_Article_IEq456.gif

Fig. 2

13638_2023_2232_Article_IEq44.gif

Fig. 4

40507_2023_167_Article_IEq452.gif

40507_2023_167_Article_IEq449.gif

Fig. 3

40507_2023_167_Article_IEq438.gif

13638_2023_2232_Article_IEq10.gif

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  文献评价指标  
  下载次数:10次 浏览次数:3次