期刊论文详细信息
ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS
Sparse BD-Net: A Multiplication-less DNN with Sparse Binarized Depth-wise Separable Convolution
Article
He, Zhezhi1  Yang, Li1  Angizi, Shaahin2  Rakin, Adnan Siraj1  Fan, Deliang1 
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, 650 E Tyler Mall, Tempe, AZ 85287 USA.;Univ Cent Florida, Dept ECE, 4328 Scorpius St, Orlando, FL 32816 USA.
关键词: Deep neural network;    model compression;    in-memory computing;   
DOI  :  10.1145/3369391
来源: SCIE
PDF
【 摘 要 】

In this work, we propose a multiplication-less binarized depthwise-separable convolution neural network, called BD-Net. BD-Net is designed to use binarized depthwise separable convolution block as the drop-in replacement of conventional spatial-convolution in deep convolution neural network (DNN). In BD-Net, the computation-expensive convolution operations (i.e., Multiplication and Accumulation) are converted into energy-efficient Addition/Subtraction operations. For further compressing the model size while maintaining the dominant computation in addition/subtraction, we propose a brand-new sparse binarization method with a hardware-oriented structured sparsity pattern. To successfully train such sparse BD-Net, we propose and leverage two techniques: (1) a modified group-lasso regularization whose group size is identical to the capacity of basic computing core in accelerator and (2) a weight penalty clipping technique to solve the disharmony issue between weight binarization and lasso regularization. The experiment results show that the proposed sparse BD-Net can achieve comparable or even better inference accuracy, in comparison to the full precision CNN baseline. Beyond that, a BD-Net customized process-in-memory accelerator is designed using SOT-MRAM, which owns characteristics of high channel expansion flexibility and computation parallelism. Through the detailed analysis from both software and hardware perspectives, we provide an intuitive design guidance for software/hardware co-design of DNN acceleration on mobile embedded systems. Note that this journal submission is the extended version of our previous published paper in ISVLSI 2018 [24].

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
RO202303094734188ZK.pdf 2745KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  文献评价指标  
  下载次数:6次 浏览次数:4次