期刊论文详细信息
AIMS Mathematics
A proof of a conjecture on matching-path connected size Ramsey number
article
Yixin Zhang1  Yanbo Zhang1  Hexuan Zhi1 
[1] School of Mathematical Sciences, Hebei Normal University;Hebei International Joint Research Center for Mathematics and Interdisciplinary Science
关键词: size Ramsey number;    connected size Ramsey number;    matching;    path;   
DOI  :  10.3934/math.2023406
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

For two graphs $ G_1 $ and $ G_2 $, the connected size Ramsey number $ {\hat{r}}_c(G_1, G_2) $ is the smallest number of edges of a connected graph $ G $ such that if each edge of $ G $ is colored red or blue, then $ G $ contains either a red copy of $ G_1 $ or a blue copy of $ G_2 $. Let $ nK_2 $ be a matching with $ n $ edges and $ P_4 $ a path with four vertices. Rahadjeng, Baskoro, and Assiyatun [Procedia Comput. Sci. 74 (2015), 32-37] conjectured that $ \hat{r}_{c}(nK_2, P_4) = 3n-1 $ if $ n $ is even, and $ \hat{r}_{c}(nK_2, P_4) = 3n $ otherwise. We verify the conjecture in this short paper.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002770ZK.pdf 212KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次