AIMS Mathematics | |
A proof of a conjecture on matching-path connected size Ramsey number | |
article | |
Yixin Zhang1  Yanbo Zhang1  Hexuan Zhi1  | |
[1] School of Mathematical Sciences, Hebei Normal University;Hebei International Joint Research Center for Mathematics and Interdisciplinary Science | |
关键词: size Ramsey number; connected size Ramsey number; matching; path; | |
DOI : 10.3934/math.2023406 | |
学科分类:地球科学(综合) | |
来源: AIMS Press | |
【 摘 要 】
For two graphs $ G_1 $ and $ G_2 $, the connected size Ramsey number $ {\hat{r}}_c(G_1, G_2) $ is the smallest number of edges of a connected graph $ G $ such that if each edge of $ G $ is colored red or blue, then $ G $ contains either a red copy of $ G_1 $ or a blue copy of $ G_2 $. Let $ nK_2 $ be a matching with $ n $ edges and $ P_4 $ a path with four vertices. Rahadjeng, Baskoro, and Assiyatun [Procedia Comput. Sci. 74 (2015), 32-37] conjectured that $ \hat{r}_{c}(nK_2, P_4) = 3n-1 $ if $ n $ is even, and $ \hat{r}_{c}(nK_2, P_4) = 3n $ otherwise. We verify the conjecture in this short paper.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200002770ZK.pdf | 212KB | download |