期刊论文详细信息
AIMS Mathematics
The number of solutions of cubic diagonal equations over finite fields
article
Shuangnian Hu1  Rongquan Feng2 
[1] School of Mathematics and Physics, Nanyang Institute of Technology;School of Mathematics and Statistics, Hainan Normal University;School of Mathematical Sciences, Peking University
关键词: finite fields;    rational points;    diagonal equations;    Jacobi sums;   
DOI  :  10.3934/math.2023322
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

Let $ p $ be a prime, $ k $ be a positive integer, $ q = p^k $, and $ \mathbb{F}_q $ be the finite field with $ q $ elements. Let $ \mathbb{F}_q^* $ be the multiplicative group of $ \mathbb{F}_{q} $, that is $ \mathbb{F}_q^* = \mathbb{F}_{q}\setminus\{0\} $. In this paper, explicit formulae for the numbers of solutions of cubic diagonal equations $ a_1x_1^3+a_2x_2^3 = c $ and $ b_1x_1^3+b_2x_2^3+b_3x_3^3 = c $ over $ \mathbb{F}_q $ are given, with $ a_i, b_j\in\mathbb{F}_q^* $ $ (1\leq i\leq 2, 1\leq j\leq 3) $, $ c\in\mathbb{F}_q $ and $ p\equiv1(\rm{mod} \ 3) $. Furthermore, by using the reduction formula for Jacobi sums, the number of solutions of the cubic diagonal equations $ a_1x_1^3+a_2x_2^3+\cdots+a_sx_s^3 = c $ of $ s\geq 4 $ variables with $ a_i\in\mathbb{F}_q^* $ $ (1\leq i\leq s) $, $ c\in\mathbb{F}_q $ and $ p\equiv1(\rm{mod} \ 3) $, can also be deduced.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002687ZK.pdf 237KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:7次