期刊论文详细信息
AIMS Mathematics | |
Critical regularity of nonlinearities in semilinear effectively damped wave models | |
article | |
Abdelhamid Mohammed Djaouti1  Michael Reissig2  | |
[1] Preparatory Year Deanship, King Faisal University;Faculty for Mathematics and Computer Science, Technical University Bergakademie | |
关键词: damped wave equations; time dependent dissipation; global existence; blow-up; critical regularity; | |
DOI : 10.3934/math.2023236 | |
学科分类:地球科学(综合) | |
来源: AIMS Press | |
【 摘 要 】
In this paper we consider the Cauchy problem for the semilinear effectively damped wave equation$ \begin{equation*} u_{tt}-u_{xx}+b(t)u_{t} = |u|^{3}\mu(|u|), \, \, \, u(0, x) = u_{0}(x), \, \, \, u_{t}(0, x) = u_{1}(x). \end{equation*} $Our goal is to propose sharp conditions on $ \mu $ to obtain a threshold between global (in time) existence of small data Sobolev solutions (stability of the zero solution) and blow-up behaviour even of small data Sobolev solutions.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200002602ZK.pdf | 288KB | download |