期刊论文详细信息
AIMS Mathematics
On the comparative performance of fourth order Runge-Kutta and the Galerkin-Petrov time discretization methods for solving nonlinear ordinary differential equations with application to some mathematical models in epidemiology
article
Attaullah1  Mansour F. Yassen2  Sultan Alyobi4  Fuad S. Al-Duais5  Wajaree Weera7 
[1] Department of Mathematics & Statistics, Bacha Khan University;Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University;Department of Mathematics, Faculty of Science, Damietta University;King Abdulaziz University, College of Science & Arts, Department of Mathematics;Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam bin Abdulaziz University;Administration Department, Administrative Science College, Thamar University;Department of Mathematics, Faculty of Science, Khon Kaen University
关键词: HBV model;    the cGP(2)-method;    RK4-method;    numerical comparison;    efficiency of methods;   
DOI  :  10.3934/math.2023185
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

Anti-viral medication is comparably incredibly beneficial for individuals who are infected with numerous viruses. Mathematical modeling is crucial for comprehending the various relationships involving viruses, immune responses and health in general. This study concerns the implementation of a continuous Galerkin-Petrov time discretization scheme with mathematical models that consist of nonlinear ordinary differential equations for the hepatitis B virus, the Chen system and HIV infection. For the Galerkin scheme, we have two unknowns on each time interval which have to be computed by solving a $ 2 \times 2 $ block system. The proposed method is accurate to order 3 in the whole time interval and shows even super convergence of order 4 in the discrete time points. The study presents the accurate solutions achieved by means of the aforementioned schemes, presented numerically and graphically. Further, we implemented the classical fourth-order Runge-Kutta scheme accurately and performed various numerical tests for assessing the efficiency and computational cost (in terms of time) of the suggested schemes. The performances of the fourth order Runge-Kutta and the Galerkin-Petrov time discretization approaches for solving nonlinear ordinary differential equations were compared, with applications towards certain mathematical models in epidemiology. Several simulations were carried out with varying time step sizes, and the efficiency of the Galerkin and Runge Kutta schemes was evaluated at various time points. A detailed analysis of the outcomes obtained by the Galerkin scheme and the Runge-Kutta technique indicates that the results presented are in excellent agreement with each other despite having distinct computational costs in terms of time. It is observed that the Galerkin scheme is noticeably slower and requires more time in comparison to the Runge Kutta scheme. The numerical computations demonstrate that the Galerkin scheme provides highly precise solutions at relatively large time step sizes as compared to the Runge-Kutta scheme.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002551ZK.pdf 605KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:2次