期刊论文详细信息
AIMS Mathematics
Existence and multiplicity of standing wave solutions for perturbed fractional p -Laplacian systems involving critical exponents
article
Shulin Zhang1 
[1] School of Mathematics, China University of Mining and Technology;School of Mathematics
关键词: perturbed fractional p -Laplacian systems;    critical growth;    variational methods;    standing wave solutions;   
DOI  :  10.3934/math.2023048
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

In this paper, we investigate the existence of standing wave solutions to the following perturbed fractional p -Laplacian systems with critical nonlinearity$ \begin{equation*} \left\{ \begin{aligned} &\varepsilon^{ps}(-\Delta)^{s}_{p}u + V(x)|u|^{p-2}u = K(x)|u|^{p^{*}_{s}-2}u + F_{u}(x, u, v), \; x\in \mathbb{R}^{N}, \\ &\varepsilon^{ps}(-\Delta)^{s}_{p}v + V(x)|v|^{p-2}v = K(x)|v|^{p^{*}_{s}-2}v + F_{v}(x, u, v), \; x\in \mathbb{R}^{N}. \end{aligned} \right. \end{equation*} $Under some proper conditions, we obtain the existence of standing wave solutions $ (u_{\varepsilon}, v_{\varepsilon}) $ which tend to the trivial solutions as $ \varepsilon\rightarrow 0 $. Moreover, we get $ m $ pairs of solutions for the above system under some extra assumptions. Our results improve and supplement some existing relevant results.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002415ZK.pdf 257KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次