AIMS Mathematics | |
Uniqueness of meromorphic functions concerning fixed points | |
article | |
Jinyu Fan1  Mingliang Fang1  Jianbin Xiao1  | |
[1] Department of Mathematics, Hangzhou Dianzi University | |
关键词: meromorphic function; entire function; unicity; fixed point; | |
DOI : 10.3934/math.20221122 | |
学科分类:地球科学(综合) | |
来源: AIMS Press | |
【 摘 要 】
In this paper, we study a uniqueness question of meromorphic functions concerning fixed points and mainly prove the following theorem: Let $ f $ and $ g $ be two nonconstant meromorphic functions, let $ n, k $ be two positive integers with $ n > 3k+10.5-\Theta_{\min}(k+6.5) $, if $ \Theta_{\min}\geq \frac{2.5}{k+6.5} $, otherwise $ n > 3k+8 $, and let $ (f^{n})^{(k)} $ and $ (g^{n})^{(k)} $ share $ z $ CM, $ f $ and $ g $ share $ \infty $ IM, then one of the following two cases holds: If $ k = 1 $, then either $ f(z) = c_{1}e^{cz^{2}} $, $ g(z) = c_{2}e^{-cz^{2}} $, where $ c_{1}, c_{2} $ and $ c $ are three constants satisfying $ 4n^{2}(c_{1}c_{2})^{n}c^{2} = -1 $, or $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $; if $ k\geq2 $, then $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $. Our results extend and improve some results due to [ 8 , 9 , 19 , 24 ] .
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200002342ZK.pdf | 267KB | download |