AIMS Mathematics | |
On triple correlation sums of Fourier coefficients of cusp forms | |
article | |
Fei Hou1  Bin Chen2  | |
[1] Department of Mathematics, College of Science, Xi'an University of Technology;Department of Mathematics, College of Mathematics and Physics, Weinan Normal University | |
关键词: automorphic forms; Fourier coefficients; triple correlation sums; | |
DOI : 10.3934/math.20221063 | |
学科分类:地球科学(综合) | |
来源: AIMS Press | |
【 摘 要 】
Let $ p $ be a prime. In this paper, we study the sum$ \sum\limits_{m\ge 1} \sum\limits_{n\ge 1} a_n \lambda_g(m)\lambda_{f}(m+pn) \,U{ \left( \frac{m}{X} \right) }V{ \left ( \frac{n}{H} \right)} $for any newforms $ g\in \mathcal{B}_k(1) $ (or $ \mathcal{B}_\lambda^\ast(1) $) and $ f\in \mathcal{B}_k(p) $ (or $ \mathcal{B}_\lambda^\ast(p) $), with the aim of determining the explicit dependence on the level, where $ {\bf{a}} = \{a_n\in\mathbb{C}\} $ is an arbitrary complex sequence. As a result, we prove a uniform bound with respect to the level parameter $ p $, and present that this type of sum is non-trivial for any given $ H, X\ge 2 $.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200002286ZK.pdf | 269KB | download |