期刊论文详细信息
AIMS Mathematics
Gap solitons in periodic difference equations with sign-changing saturable nonlinearity
article
Zhenguo Wang1  Yuanxian Hui1  Liuyong Pang1 
[1] School of Mathematics and Statistics, Huanghuai University
关键词: Schrödinger equations;    gap solitons;    critical point theory;    approximation;   
DOI  :  10.3934/math.20221036
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

In this paper, we consider the existence of gap solitons for a class of difference equations:$ \begin{equation*} Lu_{n}-\omega u_{n} = f_{n}(u_{n}), n\in\mathbb{Z}, \end{equation*} $where $ Lu_{n} = a_{n}u_{n+1}+a_{n-1}u_{n-1}+b_{n}u_{n} $ is the discrete difference operator in one spatial dimension, $ \{a_{n}\} $ and $ \{b_{n}\} $ are real valued T-periodic sequences, $ \omega\in \mathbb{R} $, $ f_{n}(\cdot)\in C(\mathbb{R}, \mathbb{R}) $ and $ f_{n+T}(\cdot) = f_{n}(\cdot) $ for each $ n\in\mathbb{Z} $. Under general asymptotically linear conditions on the nonlinearity $ f_{n}(\cdot) $, we establish the existence of gap solitons for the above equation via variational methods when $ t f_{n}(t) $ is allowed to be sign-changing. Our methods further extend and improve the existing results.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002259ZK.pdf 248KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次