期刊论文详细信息
AIMS Mathematics
Extended Prudnikov sum
article
Robert Reynolds1  Allan Stauffer1 
[1] Department of Mathematics and Statistics, York University
关键词: finite sum;    finite product;    trigonometric function;    Catalan's constant;    Hurwitz-Lerch Zeta function;    Cauchy integral;   
DOI  :  10.3934/math.20221021
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

A Prudnikov sum is extended to derive the finite sum of the Hurwitz-Lerch Zeta function in terms of the Hurwitz-Lerch Zeta function. This formula is then used to evaluate a number trigonometric sums and products in terms of other trigonometric functions. These sums and products are taken over positive integers which can be simplified in certain circumstances. The results obtained include generalizations of linear combinations of the Hurwitz-Lerch Zeta functions and involving powers of 2 evaluated in terms of sums of Hurwitz-Lerch Zeta functions. Some of these derivations are in the form of a new recurrence identity and finite products of trigonometric functions.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002244ZK.pdf 311KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次