AIMS Mathematics | |
Meromorphic solutions of f n + P d ( f ) = p 1 e α 1 z + p 2 e α 2 z + p 3 e α 3 z " role="presentation"> f n + P d ( f ) = p 1 e α 1 z + p 2 e α 2 z + p 3 e α 3 z f n + P d ( f ) = p 1 e α 1 z + p 2 e α 2 z + p 3 e α 3 z f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} | |
article | |
Linkui Gao1  Junyang Gao1  | |
[1] School of Science, China University of Mining and Technology | |
关键词: Nevanlinna theory; complex differential equations; exponential sums; meromorphic solutions; | |
DOI : 10.3934/math.20221007 | |
学科分类:地球科学(综合) | |
来源: AIMS Press | |
【 摘 要 】
By using Nevanlinna of the value distribution of meromorphic functions, we investigate the transcendental meromorphic solutions of the non-linear differential equation$ \begin{equation*} f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} $where $ P_{d}(f) $ is a differential polynomial in $ f $ of degree $ d(0\leq d\leq n-3) $ with small meromorphic coefficients and $ p_{i}, \alpha_{i}(i = 1, 2, 3) $ are nonzero constants. We show that the solutions of this type equation are exponential sums and they are in $ \Gamma_{0}\cup\Gamma_{1}\cup\Gamma_{3} $ which will be given in Section $ 1 $. Moreover, we give some examples to illustrate our results.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200002230ZK.pdf | 262KB | download |