期刊论文详细信息
AIMS Mathematics
Non-resonance with one-sided superlinear growth for indefinite planar systems via rotation numbers
article
Chunlian Liu1 
[1] School of Science, Nantong University
关键词: periodic solutions;    non-resonance;    rotation numbers;    one-sided superlinear;    Poincaré-Bohl theorem;   
DOI  :  10.3934/math.2022781
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

We consider the non-resonance with one-sided superlinear growth conditions for the indefinite planar system $ z' = f(t, z) $ from a rotation number viewpoint, and obtain the existence of $ 2\pi $-periodic solutions by applying a rotation number approach together with the Poincaré-Bohl theorem. We allow that the angular velocity of solutions of $ z' = f(t, z) $ is controlled by the angular velocity of solutions of two positively homogeneous and oddly symmetric systems $ z' = L_i(t, z), i = 1, 2 $ on the left half-plane, which have rotation numbers that satisfy $ \rho(L_1) > n/2 $ and $ \rho(L_2) < (n+1)/2 $, and allow $ f(t, z) $ to grow superlinearly on the right half-plane. In order to estimate the rotation angle difference of solutions, we develop a system methodology of "tracking" the angle difference of solutions of the system $ z' = f(t, z) $ on each small interval on the given side under sign-varying conditions.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002008ZK.pdf 382KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次