期刊论文详细信息
AIMS Mathematics
Yamabe constant evolution and monotonicity along the conformal Ricci flow
article
Yanlin Li1  Abimbola Abolarinwa2  Shahroud Azami3  Akram Ali4 
[1] School of Mathematics, Hangzhou Normal University;Department of Mathematics, University of Lagos;Department of pure Mathematics, Faculty of Science, Imam Khomeini International University;Department of Mathematics, College of Science, King Khalid University
关键词: Yamabe constant;    conformal Ricci flow;    Einstein metric;    scalar curvature;   
DOI  :  10.3934/math.2022671
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

We investigate the Yamabe constant's behaviour in a conformal Ricci flow. For conformal Ricci flow metric $ g(t) $, $ t \in [0, T) $, the time evolution formula for the Yamabe constant $ Y(g(t)) $ is derived. It is demonstrated that if the beginning metric $ g(0) = g_0 $ is Yamabe metric, then the Yamabe constant is monotonically growing along the conformal Ricci flow under some simple assumptions unless $ g_0 $ is Einstein. As a result, this study adds to the body of knowledge about the Yamabe problem.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200001899ZK.pdf 256KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次