| Opuscula Mathematica | |
| Influence of an L p -perturbation on Hardy-Sobolev inequality with singularity a curve | |
| article | |
| Idowu Esther Ijaodoro1  El Hadji Abdoulaye Thiam (corresponding author)2  | |
| [1] African Institute for Mathematical Sciences in Senegal;Université de Thies, UFR des Sciences et Techniques, Département de Mathématiques | |
| 关键词: Hardy-Sobolev inequality; positive minimizers; parametrized curve; mass; Green function.; | |
| DOI : 10.7494/OpMath.2021.41.2.187 | |
| 学科分类:环境科学(综合) | |
| 来源: AGH University of Science and Technology Press | |
PDF
|
|
【 摘 要 】
We consider a bounded domain \(\Omega\) of \(\mathbb{R}^N\), \(N \geq 3\), \(h\) and \(b\) continuous functions on \(\Omega\). Let \(\Gamma\) be a closed curve contained in \(\Omega\). We study existence of positive solutions \(u \in H^1_0(\Omega)\) to the perturbed Hardy-Sobolev equation: \[-\Delta u+hu+bu^{1+\delta}=\rho^{-\sigma}_{\Gamma} u^{2^*_{\sigma}-1} \quad \textrm{ in } \Omega,\] where \(2^*_{\sigma}:=\frac{2(N-\sigma)}{N-2}\) is the critical Hardy-Sobolev exponent, \(\sigma\in [0,2)\), \(0\lt\delta\lt\frac{4}{N-2}\) and \(\rho_{\Gamma}\) is the distance function to \(\Gamma\). We show that the existence of minimizers does not depend on the local geometry of \(\Gamma\) nor on the potential \(h\). For \(N=3\), the existence of ground-state solution may depends on the trace of the regular part of the Green function of \(-\Delta+h\) and or on \(b\). This is due to the perturbative term of order \(1+\delta\).
【 授权许可】
CC BY-NC
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202302200001640ZK.pdf | 511KB |
PDF