期刊论文详细信息
Opuscula Mathematica
Influence of an L p -perturbation on Hardy-Sobolev inequality with singularity a curve
article
Idowu Esther Ijaodoro1  El Hadji Abdoulaye Thiam (corresponding author)2 
[1] African Institute for Mathematical Sciences in Senegal;Université de Thies, UFR des Sciences et Techniques, Département de Mathématiques
关键词: Hardy-Sobolev inequality;    positive minimizers;    parametrized curve;    mass;    Green function.;   
DOI  :  10.7494/OpMath.2021.41.2.187
学科分类:环境科学(综合)
来源: AGH University of Science and Technology Press
PDF
【 摘 要 】

We consider a bounded domain \(\Omega\) of \(\mathbb{R}^N\), \(N \geq 3\), \(h\) and \(b\) continuous functions on \(\Omega\). Let \(\Gamma\) be a closed curve contained in \(\Omega\). We study existence of positive solutions \(u \in H^1_0(\Omega)\) to the perturbed Hardy-Sobolev equation: \[-\Delta u+hu+bu^{1+\delta}=\rho^{-\sigma}_{\Gamma} u^{2^*_{\sigma}-1} \quad \textrm{ in } \Omega,\] where \(2^*_{\sigma}:=\frac{2(N-\sigma)}{N-2}\) is the critical Hardy-Sobolev exponent, \(\sigma\in [0,2)\), \(0\lt\delta\lt\frac{4}{N-2}\) and \(\rho_{\Gamma}\) is the distance function to \(\Gamma\). We show that the existence of minimizers does not depend on the local geometry of \(\Gamma\) nor on the potential \(h\). For \(N=3\), the existence of ground-state solution may depends on the trace of the regular part of the Green function of \(-\Delta+h\) and or on \(b\). This is due to the perturbative term of order \(1+\delta\).

【 授权许可】

CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO202302200001640ZK.pdf 511KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:4次