期刊论文详细信息
Opuscula Mathematica
An inverse backward problem for degenerate two-dimensional parabolic equation
article
Khalid Atifi (corresponding author)1  El-Hassan Essoufi1  Bouchra Khouiti1 
[1] Laboratoire de Mathématiques, Informatique et Sciences de l'ingénieur ,(MISI), Université Hassan 1
关键词: data assimilation;    adjoint method;    regularization;    heat equation;    inverse problem;    degenerate equations;    optimization.;   
DOI  :  10.7494/OpMath.2020.40.4.427
学科分类:环境科学(综合)
来源: AGH University of Science and Technology Press
PDF
【 摘 要 】

This paper deals with the determination of an initial condition in the degenerate two-dimensional parabolic equation \[\partial_{t}u-\mathrm{div}\left(a(x,y)I_2\nabla u\right)=f,\quad (x,y)\in\Omega,\; t\in(0,T),\] where \(\Omega\) is an open, bounded subset of \(\mathbb{R}^2\), \(a \in C^1(\bar{\Omega})\) with \(a\geqslant 0\) everywhere, and \(f\in L^{2}(\Omega \times (0,T))\), with initial and boundary conditions \[u(x,y,0)=u_0(x,y), \quad u\mid_{\partial\Omega}=0,\] from final observations. This inverse problem is formulated as a minimization problem using the output least squares approach with the Tikhonov regularization. To show the convergence of the descent method, we prove the Lipschitz continuity of the gradient of the Tikhonov functional. Also we present some numerical experiments to show the performance and stability of the proposed approach.

【 授权许可】

CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO202302200001613ZK.pdf 626KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:3次