期刊论文详细信息
Opuscula Mathematica
Oscillatory results for second-order noncanonical delay differential equations
article
Jozef Džurina1  Irena Jadlovská1  Ioannis P. Stavroulakis2 
[1] Technical University of Košice, Faculty of Electrical Engineering and Informatics, Department of Mathematics and Theoretical Informatics;Al-Farabi Kazakh National University, Faculty of Mathematics and Mechanics
关键词: linear differential equation;    delay;    second-order;    noncanonical;    oscillation.;   
DOI  :  10.7494/OpMath.2019.39.4.483
学科分类:环境科学(综合)
来源: AGH University of Science and Technology Press
PDF
【 摘 要 】

The main purpose of this paper is to improve recent oscillation results for the second-order half-linear delay differential equation \[\left(r(t)\left(y'(t)\right)^\gamma\right)'+q(t)y^\gamma(\tau(t))= 0, \quad t\geq t_0,\] under the condition \[\int_{t_0}^{\infty}\frac{\text{d} t}{r^{1/\gamma}(t)} \lt \infty.\] Our approach is essentially based on establishing sharper estimates for positive solutions of the studied equation than those used in known works. Two examples illustrating the results are given.

【 授权许可】

CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO202302200001572ZK.pdf 439KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次