期刊论文详细信息
Opuscula Mathematica | |
Extremal length and Dirichlet problem on Klein surfaces | |
article | |
Monica Roşiu1  | |
[1] University of Craiova, Department of Mathematics | |
关键词: Klein surface; extremal length; extremal distance.; | |
DOI : 10.7494/OpMath.2019.39.2.281 | |
学科分类:环境科学(综合) | |
来源: AGH University of Science and Technology Press | |
【 摘 要 】
The object of this paper is to extend the method of extremal length to Klein surfaces by solving conformally invariant extremal problems on the complex double. Within this method we define the extremal length, the extremal distance, the conjugate extremal distance, the modulus, the reduced extremal distance on a Klein surface and we study their dependences on arcs.
【 授权许可】
CC BY-NC
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200001561ZK.pdf | 441KB | download |