期刊论文详细信息
Statistical Analysis and Data Mining
Modeling and inference for mixtures of simple symmetric exponential families of -dimensional distributions for vectors with binary coordinates
article
Abhishek Chakraborty1  Stephen B. Vardeman2 
[1] Department of Mathematics, Statistics, and Computer Science, Lawrence University;Department of Statistics, Iowa State University;Department of Industrial and Manufacturing Systems Engineering, Iowa State University
关键词: Bayesian analysis;    mixture models;    MCMC;    pixel flips;    missing entries;   
DOI  :  10.1002/sam.11528
学科分类:社会科学、人文和艺术(综合)
来源: John Wiley & Sons, Inc.
PDF
【 摘 要 】

We propose tractable symmetric exponential families of distributions for multivariate vectors of 0's and 1's in dimensions, or what are referred to in this paper as binary vectors, that allow for nontrivial amounts of variation around some central value . We note that more or less standard asymptotics provides likelihood-based inference in the one-sample problem. We then consider mixture models where component distributions are of this form. Bayes analysis based on Dirichlet processes and Jeffreys priors for the exponential family parameters prove tractable and informative in problems where relevant distributions for a vector of binary variables are clearly not symmetric. We also extend our proposed Bayesian mixture model analysis to datasets with missing entries. Performance is illustrated through simulation studies and application to real datasets.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202302050004624ZK.pdf 1251KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次