期刊论文详细信息
Compositio mathematica
The Hanna Neumann conjecture for surface groups
article
Yago Antolín1  Andrei Jaikin-Zapirain2 
[1] Departamento de Álgebra, Geometría y Topología, Universidad Complutense de Madrid;Departamento de Matemáticas, Universidad Autónoma de Madrid
关键词: surface groups;    limit groups;    L2-Betti numbers;    the Hanna Neumann conjecture;    Lück's approximation;    20F67;    20E18;    20J05;    20C07;   
DOI  :  10.1112/S0010437X22007709
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302050001253ZK.pdf 602KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次