期刊论文详细信息
Compositio mathematica
The symplectic isotopy problem for rational cuspidal curves
article
Marco Golla1  Laura Starkston2 
[1] CNRS, Laboratoire de Mathématiques Jean Leray, Université de Nantes;Department of Mathematics
关键词: singular;    symplectic;    isotopy;    rational cuspidal;    plane curve;    57K43;    14H50;    57R52;    14H20;   
DOI  :  10.1112/S0010437X2200762X
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irreducible singularities (rational cuspidal curves) in the complex projective plane. We prove that every such curve is isotopic to a complex curve in degrees up to five, and for curves with one singularity whose link is a torus knot. Classification results of symplectic isotopy classes rely on pseudo-holomorphic curves together with a symplectic version of birational geometry of log pairs and techniques from four-dimensional topology.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302050001248ZK.pdf 2378KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:3次