| Compositio mathematica | |
| Moduli of surfaces in ${{\mathbb {P}}}^{3}$ | |
| article | |
| Kristin DeVleming1  | |
| [1] Department of Mathematics, University of Massachusetts | |
| 关键词: algebraic geometry; birational geometry and moduli spaces; moduli of stable pairs; 14J10; 14J29; 14J70; 14E30; | |
| DOI : 10.1112/S0010437X22007552 | |
| 学科分类:数学(综合) | |
| 来源: Cambridge University Press | |
PDF
|
|
【 摘 要 】
The main goal of this paper is to construct a compactification of the moduli space of degree $d \geqslant 5$ surfaces in $\mathbb {P}^{3}_{{{\mathbb {C}}}}$ , i.e. a parameter space whose interior points correspond to (equivalence classes of) smooth surfaces in $\mathbb {P}^{3}$ and whose boundary points correspond to degenerations of such surfaces. We consider a divisor $D$ on a Fano variety $Z$ as a pair $(Z, D)$ satisfying certain properties. We find a modular compactification of such pairs and, in the case of $Z = {{\mathbb {P}}}^{3}$ and $D$ a surface, use their properties to classify the pairs on the boundary of the moduli space.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202302050001245ZK.pdf | 853KB |
PDF