期刊论文详细信息
Compositio mathematica
Moduli of surfaces in ${{\mathbb {P}}}^{3}$
article
Kristin DeVleming1 
[1] Department of Mathematics, University of Massachusetts
关键词: algebraic geometry;    birational geometry and moduli spaces;    moduli of stable pairs;    14J10;    14J29;    14J70;    14E30;   
DOI  :  10.1112/S0010437X22007552
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

The main goal of this paper is to construct a compactification of the moduli space of degree $d \geqslant 5$ surfaces in $\mathbb {P}^{3}_{{{\mathbb {C}}}}$ , i.e. a parameter space whose interior points correspond to (equivalence classes of) smooth surfaces in $\mathbb {P}^{3}$ and whose boundary points correspond to degenerations of such surfaces. We consider a divisor $D$ on a Fano variety $Z$ as a pair $(Z, D)$ satisfying certain properties. We find a modular compactification of such pairs and, in the case of $Z = {{\mathbb {P}}}^{3}$ and $D$ a surface, use their properties to classify the pairs on the boundary of the moduli space.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302050001245ZK.pdf 853KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:1次