期刊论文详细信息
Compositio mathematica
Local limit theorems in relatively hyperbolic groups II: the non-spectrally degenerate case
article
Matthieu Dussaule1 
[1] Faculté des Sciences et Techniques, Université de Tours
关键词: random walks;    thermodynamic formalism;    transfer operator;    relative Ancona inequalities;    20F65;    05C81;    60F15;    37C30;   
DOI  :  10.1112/S0010437X22007448
学科分类:数学(综合)
来源: Cambridge University Press
PDF
【 摘 要 】

This is the second of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this second paper, we restrict our attention to non-spectrally degenerate random walks and we prove precise asymptotics of the probability $p_n(e,e)$ of going back to the origin at time $n$ . We combine techniques adapted from thermodynamic formalism with the rough estimates of the Green function given by part I to show that $p_n(e,e)\sim CR^{-n}n^{-3/2}$ , where $R$ is the inverse of the spectral radius of the random walk. This both generalizes results of Woess for free products and results of Gouëzel for hyperbolic groups.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302050001238ZK.pdf 902KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:4次